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Lifting removal of cationic dye (methylene blue) from 
wastewater by improving Zr-MOFs via second metal Al 
coordination 

ABST�CT: Metal organic frameworks (MOFs) are frequently used as adsorbents in adsorption processes to remove dyes 
from effluent produced by the textile industry. Today, dye contaminants have become an important environmental problem. 
One of these dyes is methylene blue (MB) and its removal from wastewater is a priority because it is persistent and non          
degradable. MB is used in many industries although it has potential harmful effects on human and aquatic life and can be       
considered a hazardous chemical when in wastewater. �e present study shows the potential applications for enhanced forms of 
UiO-66 MOFs, such as UiO-66, UiO-66-10%Al and UiO-66-30%Al. �ese forms were prepared to remove MB from 
wastewater using batch experiments. Characterisation of adsorbents were accomplished successfully using Fourier transform 
infrared, X-ray powder diffraction, Brunauer–Emme�–Teller surface area and thermogravimetric analysis techniques. To      
investigate equilibrium adsorptive behaviour, Langmuir and Freundlich isotherm models were tested against the experimental 
data. Based on linear regression correlation coefficient (R2), the Freundlich model described the equilibrium isotherm of 
MOF/MB be�er than the Langmuir model. Of all forms of UiO-66 MOF, UiO-66-10%Al had the maximum Langmuir         
adsorption capacity at 49.26 mg/g. A kinetics study examined pseudo �rst-order, pseudo second order and Elovich models to 
determine which could explain the sorption mechanism. While the pseudo second order and Elovich models showed a good �t 
with the experimental data, the correlation coefficient of the pseudo second-order model was the highest. �ese results indicate 
that adsorption of MB is controlled by a chemisorption mechanism. Further, intraparticle diffusion was utilised to describe the 
adsorption mechanism and determine the rate-limiting steps in the adsorption process. 
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1. INTRODUCTION 

Despite government regulations, ensuring environmen-
tal compliance with established terms of wastewater release 
and chemical handling is difficult [1]. Today, dye               
contaminants have become one of the most important      
environmental problems in the world. Effluent with organic 
dyes discarded into natural watercourses endanger living 
creatures and the environment because of their toxicity and 
carcinogenic effects [2]. In addition, dye content in water 
prevents sunlight penetration which decreases plant          
photosynthesis [1]. 

Signi�cant amounts of dyes are employed in a wide 
range of industries involved in producing paper, textile, 
leather, pharmaceutics, food, cosmetics, print products,     
iron-steel products, coke, petroleum, pesticides, paints,     
solvents, wood-preserving chemicals. Further, their           
manufacturing plants consume large volumes of water that 
in turn generate large volumes of wastewater [3]. Almost 
100,000 dyes and pigments have been tabulated to exist, 
consisting of 7000 kinds of chemical structures, that are used 
to produce 7 × 105 tonnes per year worldwide [4-8]. �e 

majority of these dyes are resistant to biodegradation and 
oxidation processes [9]. About 10–15% of the dyes is       
discharged into the effluent during the dyeing process [10, 
11]. Recently, studies have reported that around 12% of 
synthetic dyes are wasted through colouring processes and 
operations [12]; 20% of lost dyes enter industrial 
wastewaters [13, 14]. 

Dyes can be divided into two main groups, anionic 
(acidic) and cationic (basic) colour dyes. Methylene blue 
(MB) is a basic dye that is a focus of this study. Although 
MB is used in some medical applications, it is also widely 
used in colouring paper, dyed co�ons, wools, coating for 
paper stocks, etc. �ough MB is not strongly hazardous, it 
has some harmful effects. Acute exposure to MB will cause 
increased heart rate, vomiting, shock, Heinz body formation, 
cyanosis, jaundice, quadriplegia and tissue necrosis in       
humans [15]. 
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Environmentally, it is essential to remove dyes from 
industrial wastewater because of their toxicity and high    
visibility [7, 16-18]. Consequently, there is a continuous 
urgent need to ensure the removal these pollutants from 
industrial effluent and to comply with government             
legislation [19]. Many techniques have been a�empted to 
discolour industrial discharge that involve chemical,          
biological and physical removal methods; however, most are 
unsuccessful because of their limitations and disadvantages 
[20]. 

Adsorption is a well-known and favourite technique 
because of its feasibility, simplicity and efficiency in the    
removal of such contaminants [21]. Many adsorbents have 
been employed to treat industrial wastewater containing 
dye. �ey include activated carbon derived from different 
sources of raw materials [22-33], agricultural solid waste [34
-47], biosorbents [17, 18, 48-60], zeolites [61-66], industrial 
solid wastes [15, 67-74], natural clay minerals [75-83],    
resins [84-87], metal oxides [88, 89], metal organic        
frameworks (MOFs)[2, 90-93]. 

Activated carbon from various sources has been the 
most investigated adsorbent in laboratories and most used 
by industries to remove basic dyes from their wastewaters 
[87, 94-97]. However, its cost has limited its commercial use 
as a sorbent. As a result, many studies have been undertaken 
in the last decade to identify a cost-effective sorbent [98]. 

MOF [99-106], or hybrid inorganic and organic    
framework [107], is a 21st century material with tuneable 
options, organic functionality, open metal sites in its         
skeleton, large-sized pores, high surface areas (1000 to 
10,000 m2/g) as well as high thermal, water, chemical,      
architectural and mechanical stability [2, 108]. It is a class of 
ultra-high porous material constructed with secondary    
building units (SBUs)[109] and synthesised by reticular 
chemistry [110, 111] that connect the inorganic part with 
the metal ion to the organic part with polytopic carboxylate 
group to form vertices and linkers with strong bonds [112]. 
�e variety of geometry, size and functionality of the        
constituents of MOFs has enabled scientists around the 
world to synthesise more than 84,185 MOF structures 
[102]. �eir variety and multiplicity, as well as permanent 
porosity, make them favourable materials in many              
applications, such as CO2 capture, hydrogen and methane 
storage, sensors, photocatalysis, drug delivery, catalysis    
applications and the adsorptive removal of contaminants 
from aqueous solutions [90, 112-117]. 

�e objective of the present study is to describe the 
synthesis and characterisation of single-metal Zr-MOF (UiO
-66) and bimetal Zr-MOFs (UiO-66-10%Al and UiO-66-
30%Al), and examine their potential as sorbents to remove 
MB, a cationic basic dye, in wastewater. �e kinetics and 
equilibrium of the adsorption process were ��ed to kinetics 
models and equilibrium theoretical models. Further, the 
mechanism that limits the rate of sorption reaction was    
investigated using an intraparticle diffusion method to     
improve understanding of the dynamics in the adsorption 
process. 

 

 

2. METHODOLOGY 

2.1 Synthesis and activation 
All chemicals were supplied by Sigma-Aldrich 

(Australia) without further puri�cations. 
A scaled-up procedure of a previously reported method 

[59] of synthesising Zr-MOF was successfully undertaken, 
using a modi�ed ratio of ZrCl4:BDC:DMF (2.27 mmol 
ZrCl4, 2.27 mmol 1,4-benzenedicarboxylic acid [BDC]). 
�e abovementioned chemicals were mixed with continuous 
agitation with 405.38 mmol N, N-dimethylformamide 
(DMF) solvothermally. �e resulting mixture was placed in 
an autoclave at 393 K for 1 d. �e product Zr-MOF was 
�ltered, dried and immersed in chloroform for 5 d. A�er 
activation by chloroform was completed, the solid was     
�ltered and dried using vacuum and heated at 463 K for 
48 h. 

�e following method was used to synthesise UiO-66-
10%Al. Terephthalic acid (1.1 g, 98%; Sigma-Aldrich) and 
DMF (73 mL, 99%; Sigma-Aldrich) were mixed together 
and stirred until the acid dissolved. Within 10 min of the 
clear solution forming, ZrCl4 (1.5 g; Sigma-Aldrich, 99%) 
was added to the solution with continued stirring for another 
5 min. Al (NO3)3.9H2O (0.15 g) was then added, along with 
2 mL of H2O, to the mixture and stirred for another 15 min. 
�e solution was transferred to a 125-mL Te�on-lined      
autoclave, which was tightly sealed and then placed in a    
preheated oven at 132 °C for 24h. �e white powder product 
of UiO-66-10% Al was collected using a centrifuge machine 
and washed in DMF three times. �e resultant product was 
dried in an oven and activated by immersing it in absolute 
methanol (100%; Sigma-Aldrich) for 5 d. Before using the 
MOF as an adsorbent, it was �ltered, dried and heated in 
vacuum at 473K overnight. 

To synthesise UiO-66-30%Al, ZrCl4 (1.5 g) was mixed 
with terephthalic acid (1.3 g) in DMF (60.2 mL). A�er    
mixing for 15 min, Al (NO3)3.9H2O (0.45 g) was added and 
then 5 mL of H2O was added to the mixture. �e solution 
was mixed for approximately 30 min. It was then moved to a 
125-mL Te�on-lined autoclave, which was tightly sealed and 
then placed in a preheated oven at 157°C for 1d. �e white 
powder product of UiO-66-10% Al was collected using a 
centrifuge machine and washed in DMF three times. �e 
resultant product was dried in an oven and activated by   
immersing in absolute methanol (100%; Sigma-Aldrich) for 
5d. Before using the MOF as an adsorbent, it was �ltered, 
dried and heated in a vacuum at 473K overnight. 

2.2 Characterisation 
�ermogravimetric analysis (TGA) of the single-metal 

and bimetal Zr-MOFs was done using a TGA instrument 
(TGA/DSC1 STARe system; Me�ler-Toledo). All MOF 
samples were placed in crucibles and transferred to the ma-
chine and heated at a rate of 5K/min until 1173K when the 
air gas �ow rate was maintained at 10 mL/min. 

�e stability of the functional groups on the organic 
linkers were assessed using Fourier transform infrared      
spectroscopy (FTIR; Spectrum 100 FT-IR spectrometer, 
PerkinElmer). A scanning process was undertaken by an 
a�enuated total re�ectance technique to obtain the FTIR 
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spectra range 600 to 4000 cm−1 with a resolution of 4 cm−1. 
To check the integrity of the MOF structure, X-ray 

powder diffraction pa�erns were obtained using an X-ray 
diffractometer (D8 Advance, Bruker AXS) with Cu Kα    
radiation (λ = 1.5406 Å), accelerating voltage 40 kV and 
current 40 mA. 

N2 adsorption/desorption isotherms were performed 
using a Quantachrome instrument (Autosorb-1), and       
textural properties of the Zr-MOFs were determined, such as 
pore size, pore volume and surface area. All MOFs were    
prepared by heat and vacuum for 1 d before loading to the 
machine to determine their adsorption properties. 

2.3 Adsorption Process 
An aqueous stock solution of MO (1000 ppm) was 

prepared by dissolving MB (C16H18ClN3S, molecular weight 
319.85 g.mol–1; Sigma-Aldrich) in deionised water. Aqueous 
solutions with different concentrations of MB (5–100 ppm) 
were prepared by successive dilution of the stock solution 
with water, and MB concentrations were determined using 
absorbance at 668 nm wavelength of the solution a�er    
obtaining the UV spectra of the solution with a                   
spectrophotometer (UV spectrophotometer). A calibration 
curve was obtained from spectra of the standard solutions (5
–100 ppm). Prior to adsorption, the adsorbents were dried 
overnight in a vacuum at 373 K. Several glass containers 
were cleaned, dried and �lled to 20 mL with MB of different 
concentrations ranging from 5 to 50 ppm. Following this, an 
exact amount of an MOF adsorbent (20 mg) was put in each 
glass container. 

�e dye solutions containing the adsorbents were 
mixed well by a magnetic stirrer and maintained for 5 min to 
24h at 298K. �e samples for analysis were collected by    
syringe �lter at different sampling intervals. A UV              
spectrometer was used to investigate the dye content in the 
supernatant. 

2.4 Adsorption Study 
�e adsorption mechanism and rate of diffusion were 

estimated using three kinetic models: are pseudo second-
order [119], pseudo �rst-order [120] and intraparticle      
diffusion models [121]. Adsorption behaviours were        
simulated using the Langmuir [122] and Freundlich [123] 
adsorption isotherms. 

2.4.1 Kinetic Study 
Batch adsorption laboratory techniques were used to 

design the experiments. All practical kinetics experiments 
were conducted by preparing the speci�ed initial                
concentrations (5–50 mg/L) and adding a predetermined 
dose of the adsorbent into a de�nite volume of MB solution 
at room temperature. Agitation was performed with a       
magnetic stirrer machine at 200 rpm to optimise mass     
transfer and contact with the interfacial area for a                
predetermined time interval. MB concentration was       
measured using the supernatant at each predetermined time 
interval using a UV spectroscopy machine. 

�e amount of MB adsorbed onto UiO-66, UiO-66-
10% Al and UiO-66-33% Al MOFs at any time was            
calculated using Equation 1 [124]. However, the percentage 

removal of MB was computed by Equation 2 [125]. 
 
 
 
 
 
 

Where: 
qt : the amount of MB adsorbed per unit weight of MOF at 

 any time t (mg/g) 
C0 : initial concentration of the MB solution at time zero 

 (mg/L) 
Ct : the concentration of MB solution at time t (mg/L) 
V : volume of the MB solution in the batch adsorption 

 process (L) 
R% : percentage removal of MB 
m : MOF mass used in the adsorption batch process (g). 

 Pseudo �rst-order model 
�e MOF removal of MB from simulated wastewater 

can be represented by a linear pseudo �rst-order model of 
adsorption [120, 126] expressed below: 

 
 

Where: 
qe : the amount of MB adsorbed per unit weight of MOF at 

 equilibrium (mg/g) 
qt : the amount of MB adsorbed per unit weight of MOF at 

 any time t (mg/g) 
k1 : pseudo first-order rate constant (min–1) 
t : time (min). 

�e linear relationship between values of ln(qe – qt) and t 
can be plo�ed as a straight line, from which qe and k1 can be 
found easily from the intercept and slope, respectively. 

 Pseudo second-order model 
�e sorption kinetics of the MOF/MB system may also be 
described by a linearised form of the pseudo second-order 
model [119], based on adsorption equilibrium capacity   
expressed in the following form: 

 

 
Where: 
qe : the amount of MB adsorbed per unit weight of MOF at 

 equilibrium (mg/g) 
qt : the amount of MB adsorbed per unit weight of MOF at 

 any time t (mg/g) 
t : time (min) 
k2 : pseudo second-order rate constant (g/mg min). 

�e values of (t/qt) are linearly correlated with t, and the 
plot of (t/qt) against t should be a straight line. �e          
determination of qe and k2 can be done from the slope and 
intercept, respectively. 

 Elovich kinetic model 
�e Elovich equation is generally used for chemisorption 
applications and can be wri�en as follows: 
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Where: 
qt : the amount of MB adsorbed per unit weight of MOF at 

 any time t (mg/g) 
α : a constant representing the initial rate of adsorption 
β : constant during any one experiment 
t : time (min). 

It appears that the initial adsorption rate at the beginning of 
contact time is not controlled by exponential law because 
when qt approaches zero, dqt/dt equals α [127]. Integrating 
Equation 5 by assuming qt = 0 at t = 0, the result will be: 
 
 
 
If αβt > 1, the simple form of Equation 5.6 can be expressed 
as follows: 

 

In a plot of the straight-line equation of qt as a function of ln
(t), the slope and intercept will be (1/β) and (1/β) ln(αβ), 
respectively. 
Equation 7 can facilitate the determination of the              
applicability of the Elovich kinetic equation on MOF/MB 
systems [128]. 

 Intraparticle diffusion model 
�e intraparticle diffusion–based model is commonly 

used to test the mechanism of adsorption of pollutants onto 
a sorbent. �is model is employed to identify the adsorption 
mechanism of MB onto MOF, and can be wri�en as follows: 

 
 

Where: 
qt : the amount of MB adsorbed per unit weight of MOF at 

 any time t (mg/g) 
kp : intraparticle diffusion rate constant (mg/ g min0.5) 
t : time (min) 
C : intercept. 

Based on this model, which is a linear relationship, the       
loading capacity is proportional to t1/2 as well as the           
intraparticle diffusion rate constant (kp); kp and C can be 
determined from the slope and intercept of the intraparticle 
diffusion equation plot, respectively. 

2.4.1 Equilibrium Study 
Equilibrium studies were also performed in the same 

experiments carried out for kinetics studies. Agitation was 
done using a magnetic stirrer machine at 200 rpm until the 
process reached equilibrium. 

�e amount of MB adsorbed onto UiO-66, UiO-66-
10%Al and UiO-66-30%Al MOFs at equilibrium can be    
expressed by Equation (2)[129]: 

 
 
 
 

Where: 
qe :  the amount of MB adsorbed per unit weight of MOF 

 at equilibrium (mg/g) 
C0 : initial concentration of MB solution at time zero      

 (mg/L) 
Ce :  concentration of MB solution at equilibrium (mg/L) 
V :  volume of MB solution in batch adsorption process 

 (L) 
m :  MOF mass used in the adsorption batch process (g). 

 Isotherm models 
Identifying an adsorption isotherm is essential for    

describing the interaction of the pollutant (MB) with the 
adsorbent (MOF), so that the adsorbent can be optimised 
[130]. �e two common isotherms are the Langmuir [131] 
and the Freundlich [123] isotherms. 

 �e Langmuir models 
A nonlinear form of the Langmuir isotherm model can 

be expressed as: 

 

 
It is possible to linearise the Langmuir isotherm equation to 
give the following: 

 

 
Where: 
qm :  Langmuir maximum loading capacity (mg/g) 
KL : Langmuir constant related to the energy of adsorption 

 and affinity of binding sites (L/mg) 
Ce :  the equilibrium concentration of adsorbate (mg/L) 
qe :  adsorption capacity at equilibrium (mg/g). 

A plot of Ce/qe versus Ce should obtain a linear relationship. 
�erefore, qm and KL can be determined from the slope and 
intercept of the plot. 
�e dimensionless constant separation factor RL is an       
important characteristic of the Langmuir isotherm that can 
be represented by the following equation [96, 132-134]: 
 
 
 
Where: 
C0 : initial concentration of MB (mg/L) 
KL : Langmuir constant (L/mg). 

�e value of RL plays a very important role in the shape of 
the isotherm because it indicates the adsorption process is: 
unfavourable (RL > 1), linear (RL = 1), favourable             
(0 < RL < 1), irreversible (RL = 0). 

 �e Freundlich models 
�e nonlinear model of the Freundlich isotherm [123] 

can be expressed as: 
 
 

�e linear equation of the Freundlich isotherm can be      
expressed as [15, 135]: 
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Where: 
KF : the calculated Freundlich equilibrium constant      

 ([mg/g] [L/mg]1/n) as an indicator of adsorption 
 capacity 

n :  a measure of the deviation from linearity of adsorp
 tion (g/L). 

A plot of ln(qe) versus ln(Ce) should obtain a linear          
relationship; therefore, n and KF can be determined from the 
slope and intercept of the plot. 
If the value of n > 1, it is good indication that the adsorption 
process is favourable.  

3. RESULTS AND DISCUSSION 

3.1  Characterisation 
As shown in Figure 1(a), the XRD pa�ern for the 

modi�ed bimetal Zr-MOF (UiO-66-10%Al and UiO-66-
30%Al), in contrast to the parent single-metal Zr-MOF 
(UiO-66) before and a�er use, verify the phase purity and 
structural integrity of the MOF samples. �erefore, they are 
good signs of successful synthesis and activation of MOFs 
with pores free of oxide contaminants. Furthermore, Figure 
1(a) show also the XRD pa�erns of the same above-
mentioned MOFs a�er use in adsorption process. 

Figure 1(b) illustrates FTIR spectra of parent (UiO-
66) and modi�ed bimetal Zr-MOF (UiO-66-10%Al and 
UiO-66-30%Al) before and a�er use. According to FTIR 
spectra of the three Zr-MOFs (single-metal and bimetal 
samples) shown in Figure 1(b), the application of the same 
vibration bands resulted in a slight deviation in the position 
of some peaks for the bimetal samples, with broader peaks 
verifying a difference in the dipole between ground state and 
excited state of bimetal Zr- MOFs due to incorporation of 
the second metal centre [136, 137]. �e extension of the 
vibration bands of bimetal MOFs was 1590 to 1525 cm–1; it 
was originally in the range 1615 to 1580 cm–1 because of 
C=C-C stretching in the aromatic ring of terephthalate salts 
[138]. In addition, the FTIR spectrum shows the stretching 
vibration of symmetric COO– and asymmetric COO– in 
organic linkers at bands 1500 and 1390 cm–1. However, 
bands at 881, 812 and 785 cm–1 were assigned to Zr-O 
stretching. In addition, stretching vibration of C-H at 730 
cm–1 was a�ributed to the out-of-plane bending of aromatic 
ring of UiO-66, in comparison with that at 744 cm–1     
a�ributed to the spectrum of bimetal Zr-MOF [137, 139] 
and the stretching vibration of C-H at 1017 cm–1 to Zr-
MOF. 

�ermal stability of UiO-66, UiO66-10%Al and 
UiO66-30%Al was investigated using a TGA machine 
(TGA/DSC1 STARe system; Me�ler-Toledo). �e results 
of thermogravimetric analysis of all Zr-MOFs (single-metal 
and bimetal) are shown in Figure 1(c). �ey validate the 
thermal stability and structural robustness up to 725 K with 
a continuous mass loss of 15% and 25% for bimetal and   
single-metal MOFs, respectively. However, the variation in 
the weight loss of the samples is due to pre-treatment 
(dehydrated and hydrated) and solvent molecules in the 
pore interior of the material [140]. 

Fig. 1. Characterisation of metal organic framework        
samples: (a) PXRD pa�erns, (b) FTIR spectra and (c) TGA 
pro�les of pristine and modi�ed UiO-66 samples. 

Measurements of N2 adsorption/desorption isotherms, 
pore size and surface area of Zr-MOFs (single-metal and 
bimetal) were obtained (Autosorb-1, Quantachrome       
Instruments). �e isotherms of UiO-66-Al and UiO-66 are 
illustrated in Figure 2(a) and (b). According to Figure 2(a), 
the parent UiO-66 MOF exhibits the analogous of type IV 
adsorption–desorption isotherm, which is proof of a typical 
mesoporous network. Moreover, hysteresis from 0.1–1.0 
relative pressure indicates a homogeneous pore size         
distribution [2]. 

On the other hand, Figure 2(b) shows hysteresis in the 
desorption isotherm of UiO-66-10%Al and rapid increase in 

(14) 

20 40 60

In
te

n
si

ty
 (
a
.u

)

(2)

UiO-66-10%Al Befor Use

UiO-66-30%Al Befor Use

UiO-66 Befor Use

UiO-66-10%Al After Use

UiO-66-30%Al After Use

UiO-66 After Use

(a)

1000 1500 2000 2500 3000 3500 4000

UiO-66-10%Al After Use

UiO-66 After Use

In
te

n
s
ity

 (
a
.u

)

Wavenumber (cm-1)

UiO-66 Befor Use

UiO-66-10%Al Befor Use

UiO-66-30%Al Befor Use

UiO-66-30%Al After Use

1390

1506 3673729
676

3357
1566

1507
1392

743

3358
1570

1507
1395

742

1581

1574
1506

1395
745

3350

1574
1507

1396744

1507

1394742

3361

3357

1578

400 600 800 1000 1200

20

40

60

80

100

120

140

160

180

200

220

 UiO-66-30% Al

 UiO-66-10% Al

 UiO-66

W
e
ig

h
t 
%

Temperature (K)

(c)

(b) 

J.Appl.Mat and Tech. 2021, 2(2), 94-111 



99 

Research Article 

 

Applied Materials and Technology 

adsorption at approximate relative pressure equal to 0.999, 
indicating improving mesopore and macropore size. Based 
on the N2 adsorption–desorption isotherms, the values for 
the surface area, pore volume and pore size (textural          
properties) of Zr-MOF were calculated and listed in Table 1. 
�ese values indicate decreases in the speci�c surface area 
(SBET) with increases in the percentage of the second metal. 
�at is, the SBET gradually decreased from 1585.5 m2g–1 in 
UiO-66 to become 1145.953 m2g–1 in UiO-66-10%Al, and 
reached 769.011 m2g–1 in UiO-66-30%Al. 

In contrast, the pore volume and diameter were        
enlarged in UiO-66-10%Al, at 1.34 cc g–1 and 2.33 nm,     
respectively. �e reason for such augmentation is        
a�ributable to the replacement of methanol molecules by 
the second metal in the �rst activation process involving 
solvent exchange and discarding it in the second activation 
process by heating and vacuum. 

3.2  Kinetic Studies 
Studies of kinetics are an essential part of a sorption 

process to enable the researchers to determine the rate and 
mechanism of adsorption [141]. To investigate the           
adsorption mechanism, including the mass transfer and 
chemical reaction [2], experimental data were examined 
using pseudo �rst-order, pseudo second-order and Elovich 
models. All the information and parameters relating to 
mechanism of adsorption can be obtained via adsorption 
kinetics, which are vital in treatment of aqueous effluent 
[142]. 

�e adsorption process of the three solid /liquid 
(MOF/MB) systems were examined using pseudo              
�rst-order, pseudo second order [143-145] and Elovich 
models [128, 141, 146]. �e key feature of these equations is 
the ease with which adsorption properties (e.g., adsorption 
capacity, rate constant) can be assigned, and the initial    

Adsorbents 
Specific surface area 

(SBET) (m2g–1) 
Pore volume 

(cc g–1) 
Pore diameter 

(nm) 

UiO-66 1585.5 0.82 1.04 

UiO-66-10% Al 1145.953 1.34 2.33 

UiO-66-30% Al 769.011 0.39 1.01 

Table 1 Textural properties of adsorbents based on N2 adsorption/isotherms. 
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J.Appl.Mat and Tech. 2021, 2(2), 94-111 



100 

Research Article 

 

Applied Materials and Technology 

 adsorption rate can be easily found from the linear           
equations of these models without previous knowledge of 
any parameter.  

As adsorption processes involve chemisorption, they 
can be described by pseudo second-order rate expression 
[143-145] and Elovich model [128, 141, 146]. Moreover, 
the pseudo second-order model showed the highest linear 
correlation coefficient (R2) and therefore, the highest     
agreement with the kinetics experimental data than did the 
Elovich model, for all MB/Zr-MOF systems. 

�e pseudo �rst-order equation did not �t well for the 
entire range of reactions in all MOF/MB systems. In general, 
the equation was only applicable to the �rst 20 or 30 min of 
the adsorption interaction process this is consistent with the 
reported literature [147-160]. Consequently, the MOF/MB 
systems did not �t the pseudo �rst-order equation for the 
whole range of contact time.  

Kinetics adsorption studies are crucial indicators of a 
criteria of adsorbent efficiency (i.e., the rate of adsorption) 
and provide a clear picture of the mechanism of adsorption. 

Figure 3 below explains the variation in the amount of 
adsorbate on adsorbent (qt) as a function of contact time. 
�e rate of MB adsorption was high at the beginning of the 
sorption process before slowing as the reaction progressed 
until reaching an equilibrium saturation. �at the rate of 
adsorption was faster at the start may be due to the              
accessibility of adsorptive sites of the MOFs [161, 162]. �e 
adsorption of MB by UiO-66-10%Al took less time than by 
the other two MOFs, which indicate that the rate of dye 
sorption by UiO-66-10%Al was the quickest among the 
three MOFs examined. 

Figure 3 also illustrates the dependency of MB uptake 
on contact time given different initial concentrations of MB. 
It con�rms that higher initial concentrations of MB lead to 
increases in adsorption capacity for MB dye. Consequently, 
MB uptake per unit mass of MOF, or adsorption density, 
also increases. Speci�cally, higher initial concentrations of 
MB may reduce accessibility of adsorption sites, which can 
increase the amount of adsorbate on adsorbent [163]. �e 
increase in adsorption density or capacity with higher initial 
concentrations of MB is generally due to the availability of 
unsaturated adsorption sites on the surface of MOFs during 
the sorption batch process [164, 165]. 

To analyse the adsorption kinetics of the dye/MOF 
system, pseudo �rst-order [120], pseudo second-order 
[166] and Elovich equations [127] were examined. Tables 2 
and 3 present the resultant values of the parameters ��ed to 
the pseudo second order and Elovich models, respectively. 

�ere pseudo �rst-order equation was not a good �t for 
the entire range of reactions in all MOF/MB systems;      
however, it can be generally applied to the �rst 20 or 30 min 
of the adsorption interaction process. �is is consistent with 
the reported literature [147]. Consequently, the MOF/MB 
systems did not obey the equation during the whole of the 
contact time through the equation was mostly valid for the 
initial stage of the sorption process. In addition, the           
experimental qe values, which can be obtained from the    
intercept of the linear relationship between ln(qe – qt) and 
time, did not agree with the computed values. �ese results 
are proof that the adsorption of MB onto Zr-MOFs         

(single-metal and bimetal) is not based on �rst-order         
kinetics [94]. 

�e obtained experimental data were further ��ed to 
the pseudo second-order equation. �e values for qe and k2 
were obtained from the slope and intercept of the linear 
plots of (t/qt) versus t, respectively, and listed in Table 2. 
Figure 3(b), (d) and (f) show that MB uptake by Zr-MOF 
increased with increases in contact time for each of the 
different initial MB concentrations, as well as at higher initial 
MB concentrations. �e correlation coefficients of the plots 
showed that the pseudo second-order equation had the best 
�t with the experimental data, with the range of R2 values 
(0.9953–0.9999) listed in Table 2. �ese results verify the 
agreement of this kinetic model and the second-order      
behaviour of the adsorption process of MB by Zr-MOFs. 
Based on the linear regression correlation coefficient values 
(R2), the nature of the sorption process over the whole range 
of contact time for all solid/liquid systems in this study can 
be considered a chemisorption mechanism, as the rate-
controlling step related to valence forces of sharing or      
exchanging electrons between Zr-MOFs and MB. 

�e results of the correlational analysis of the amount 
of dye adsorbed (mg/g) against contact time for four initial 
MB concentrations (5, 15, 30 and 50 ppm) are shown in 
Figure 3. �e results indicate that the amount of dye loading, 
qt (mg/g), increased with contact time for each                    
concentration separately. 

�e Elovich model can be applied to the chemisorption 
reaction; it is a model reasonably employed in chemisorp-
tion processes and to a wide range of slow adsorption       
processes. Speci�cally, this model may facilitate those        
systems for which the adsorption surface is heterogeneous. 

Experimental data of MOF/MB batch adsorption    
systems were incorrectly described using the pseudo �rst-
order model. Further, these systems can be represented by a 
combination of two or three sequential and instantaneous 
pseudo �rst-order reactions. �e basic form of the Elovich 
equation described the experimental data well; however, the 
Elovich equation can be easily ��ed to the experimental data 
using one straight line to describe the whole progress of    
contact time [128]. 

�e experimental data were also examined with respect 
to the Elovich model, with the values of all parameters     
derived and the slope and intercept of the linear relationship 
indicating the constants α and β, respectively. In addition, 
these constants can be comparison parameters of reaction 
rates of MB adsorption in the various kinds of Zr-MOF; the 
values of α and β, derived from the linear plots of qt versus ln
(t), are listed in Table 3. According to the Elovich model, 
the increase in α and/or the decrease in β should increase the 
adsorption rate, which in turn increases MB uptake.        
�erefore, the relative loading of the three Zr-MOFs are 
UiO-66-10%Al > UiO-66-30%Al > UiO-66 [128]. 

Figure 3(a), (c) and (e) illustrate the changes in           
Zr-MOFs capacities at different initial MB concentrations 
with time. Loading capacities are increased with increasing 
contact time at each initial concentration, and with higher 
initial MB concentrations. Based on the values of the         
correlation coefficient (R2) and the fact that higher R2 values 
re�ect be�er bit with the adsorption kinetics model, the best 
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 �t for the experimental data was exhibited by the Elovich 
equation model for all MB/MOF systems (single-metal and 
bimetal). �e range of R2 values (0.9242–0.9986) is listed in 

Table 3. �ese results indicate and emphasise that all the 
investigated sorption systems obey chemisorption kinetics. 

Table 2 Calculated kinetics constant (k2) and correlation coefficient (R2) of the pseudo second-order model for Ci = 5, 
15, 30 and 50 mg/L. 

Adsorbent Adsorbate 

Pseudo second-order kinetics constant k2 (g/[mg.min]) 

5 ppm 15 ppm 30 ppm 50 ppm 

k2 R2 k2 R2 k2 R2 k2 R2 

UiO-66 MB 0.01050 0.9989 0.00546 0.9992 0.00273 0.9992 0.00147 0.9990 

UiO-66-10% Al MB 1.34913 0.9999 0.01560 0.9997 0.00653 0.9995 0.00158 0.9953 

UiO-66-30% Al MB 0.00520 0.9977 0.00212 0.9984 0.00060 0.9975 0.00074 0.9990 

Fig. 3. Fi�ing of experimental data using Elovich and second-order kinetics models of MB adsorption MB onto UiO-66 (a, b), 
UiO-66-10%Al (c, d) and UiO-66-30%Al (e, f). 
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3.3  Intraparticle diffusion studies 
In addition, the intraparticle diffusion model           

suggested by Weber and Morris [121] was utilise to           
recognise the diffusion mechanism. Based on this model, the 
loading qt against the square root of the contact time varies 
almost proportionally. Further, intraparticle diffusion        
models are vital to identifying the steps involved in the      
adsorption process to facilitate understanding of the          
adsorption mechanism [167]. 

Fig. 4. Fi�ing of experimental data using intraparticle     
diffusion models of MB adsorption onto UiO-66 (a), UiO-
66-10%Al (b) and UiO-66-30%Al (c). A
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�e lack of descriptions of the adsorption mechanism 
and rate-controlling step of the adsorption process are some 
of the limitations of the pseudo first-order, pseudo second 
order and Elovich kinetic models. In response to these       
limitations, Weber and Morris created the intraparticle     
diffusion model [168]. �e migration of the pollutant (MB) 
from bulk phase to the surface of the sorbent (Zr-MOFs) 
can be either by �lm or external diffusion, pore diffusion, 
surface diffusion and adsorption on the pore surface, or a 
combination of more than one of these steps [169]. 

Figure 4 plots the qt against t1/2 rather than t, for the 
various initial MB concentrations. Linear variations in       
uptake with t1/2 is gained for a certain initial fraction of the 
reaction. �e straight-line plot of qt versus t1/2 may provide 
the values of the intraparticle diffusion rate constant kp; kp 
and C can be found from the slope and intercept of the     
model, respectively. Table 4 lists these values as well as the 
correlation coefficients (R2) for the initial MB                     
concentrations 5, 15, 30 and 50 mg/L. �e focus of the    
intraparticle diffusion model is on the second linear portion 
of the plot, in which the slope characterises the rate constant 
(kp) while the intercept (C) is related to the thickness of the 
boundary layer [15]. 

Figure 4 illustrates the three stages of the adsorption 
mechanism, which are represented by the three linear       
relationships. �e �rst part of the plot is inclined sharply, 
indicating rapid sorption or external surface adsorption. �e 
second part represents the rate-controlling step which is 
intraparticle diffusion, the slowest stage of adsorption [170]. 
�e last part is the equilibrium where the processes of      
adsorption of MB onto Zr-MOFs reach a plateau because 
either the active adsorptive sites on MOFs have been         
occupied or the concentration of MB in the solution is     

extremely low [95]. Speci�cally, Figure 4 shows that the 
second straight line does not pass through the origin or       
initial point of adsorption because of variations in              
mass-transfer rate between the saturation and equilibrium 
steps of sorption [171-174]. In addition, this kind of         
deviation from the origin is proof that pore diffusion is not 
the only rate-limiting factor [175]. 

3.4  Equilibrium studies 
A set of batch experiments was conducted with various 

initial MB concentrations: 5, 15, 30 and 50 mg/L. �e one 
factor allowed us to vary concentrations of MB while       
maintaining other process factors like MOF dose, stirrer 
speed, volume of the solution and temperature unchanged. 
Data from the equilibrium experiments were investigated 
using Langmuir [131] and Freundlich [123] isotherms. 

�e assumption of the Langmuir isotherm theory is 
described as monolayer coverage of adsorbate (MB) onto a 
homogenous adsorbent (Zr-MOFs) surface [131]. Hence, 
its basic assumption is that sorption takes place at speci�c 
homogeneous sites on the adsorbent. As soon as an           
adsorbent site is occupied by an MB molecule, no additional 
adsorption can occur at that site again. 

�e equilibrium data were examined using a Langmuir 
model. �e values of the parameters and constants, together 
with the R2 values, were obtained from the slope and          
intercept of the linear plot and listed in Table 5. Figure 5(a), 
(b) and (c) illustrate the experimental equilibrium data and 
the predicted theoretical Langmuir isotherm for the          
adsorption process of MB onto Zr-MOF (single-metal and 
bimetal). 

�e fundamental characteristics of the Langmuir     
model can be expressed in terms of a dimensionless constant 

Table 4 Calculated kinetics constant (kp), C and correlation coefficient (R2) for Ci = 5, 15, 30 and 50 ppm. 

Adsorption mechanism 

Intraparticle diffusion model 

Adsorbent 
Initial concentration of 
MB solution (mg L–1) 

kp 
(mg g–1min–(1/2)) 

C 
(mg g–1) 

R2   

UiO-66 5 0.0991 0.5017 0.9999   

15 0.22 2.1455 0.9918   

30 0.3955 3.5763 0.9884   

50 0.638 3.8144 0.9959   

UiO-66-10%Al 5 0.4314 3.8489 0.9850   

15 0.5717 7.9333 0.9552   

30 1.011 15.226 0.9797   

50 1.1428 24.123 0.9720   

UiO-66-30%Al 5 0.2536 1.0889 0.9994   

15 0.2958 5.8863 0.9947   

30 0.4446 7.9245 0.9901   

50 0.4402 15.395 0.9775   
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 separation factor, RL, or Equation 12 [133]. �e value of RL 
is an indication of the shape of the isotherm. Basically, the RL 

value determines the favourability of the adsorption process, 
which can be either unfavourable (RL > 1), linear (RL = 1), 
favourable (0 < RL < 1) or irreversible (RL = 0). �e equi-
librium analysis revealed that the RL values were between 0 
and 1, indicating a favourable adsorption process for all MB/ 
Zr-MOF (single-metal and bimetal) systems. 
�e Freundlich model [123] is an empirical equation that 
assumes the adsorption process can occur on heterogeneous 
surfaces and that the adsorption capacity depends on the 
concentration of MB. According to Equation 13, equilibrium 
adsorption properties such as kF and (1/n) are rough indica-
tors of the adsorption capacity and the adsorption intensity, 
respectively. �e favourability of the adsorption process can 
be determined from the magnitude of the exponent (1/n); 
the criterion for a favourable adsorption is that the values of 
n must be greater than one [176]. 

�e equilibrium data were further tested by the Freundlich 
isotherm model. Freundlich isotherm constants and correla-
tion coefficient (R2) values are tabulated in Table 5. As 
shown in Table 5, the correlation coefficient of the Freun-
dlich isotherm for all MB/MOF systems were higher than 
those based on the Langmuir model, proving strong lineari-
ty. �e analysis veri�ed that the values of n for all systems 
were greater than one, as tabulated in Table 5. Such a result 
is solid con�rmation of favourable adsorption and easy load-
ing of MB onto Zr-MOFs from aqueous solutions [177]. 

�e maximum Langmuir adsorption capacity was ex-
hibited by UiO-66-10%Al, with qm of 49.26 mg/g. Further-
more, the comparative adsorption capacity of Zr-MOFs for 
MB in this study, relative to that of other adsorbents report-
ed in the literature, is provided in Table 6. 

Table 5 Calculated equilibrium constants (kL, kF, qm, n and correlation coefficient (R2)) of MB adsorption onto UiO-66, UiO-
66-10%Al and UiO-66-30%Al for Ci = 5, 15, 30 and 50 mg/L. 

Adsorbent 
Adsorption isotherm 

model 
Parameter Value R2 

UiO-66 

Langmuir 
qm (mg/g) 14.52 

0.9889 
KL (L/mg) 0.02447 

Freundlich 
KF ([mg/g] [L/mg]1/n) 0.98157 

0.9979 
n (g/L) 1.2918 

UiO-66-10%Al 

Langmuir 
qm (mg/g) 49.26 

0.9396 
KL (L/mg) 29 

Freundlich 
KF ([mg/g] [L/mg]1/n) 53.53 

0.9711 
n (g/L) 4.05 

UiO-66-30%Al 

Langmuir 
qm (mg/g) 27.85 

0.9777 
KL (L/mg) 1.10 

Freundlich 
KF ([mg/g] [L/mg]1/n) 16.71 

0.9888 
n (g/L) 7.52 

Table  6  Comparison of monolayer equilibrium capacity for methylene blue onto different sorbents. 

Adsorbent Condition 
qm 

(mg/g) 
Reference 

UiO-66-10%Al 
UiO-66-30%Al 
UiO-66 

Normal 
49.26 
27.85 
14.52 

This study 
This study 
This study 

Tobacco stem ash Normal 35.70 [185] 

Oak sawdust Normal 29.94 [187] 

ZnCl2 activated POME sludge Normal 22.40 [189] 

Salvadora persica stem ash Normal 22.78 [190] 

Activated fly-ash Normal 14.28 [192] 

Fly-ash A Normal 6.0 [72] 

Coir pith carbon Normal 5.87 [194] 

Neem sawdust Normal 3.62 [195] 
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Fig. 5. Fi�ing of experimental data using Langmuir and 
Freundlich models of MB adsorption onto UiO-66 (a), UiO
-66-10%Al (b) and UiO-66-30%Al (c).  

4. CONCLUSION 

�e results of the present examination of the three     
Zr-MOFs (single-metal and bimetal) show that these MOFs 
are favourable adsorbents of the basic (cationic) dye MB 
from aqueous solutions at a wide range of MB                      
concentrations. �e characterisation of Zr-MOFs re�ected 
the integrity of their structures, the stability of the functional 
groups on the organic linkers, the suitability of their textural 
properties and thermal stability. Such characterisation was 
performed using XRD pa�erns, FTIR spectrum, N2           
adsorption/desorption isotherm and TGA pro�les of the 
UiO-66 samples. 

�e most efficient adsorbent among the three             
Ze-MOFs was UiO-66-10%Al, with the largest pore volume 
(1.34 cc. g–1) and pore diameter (2.33 nm), verifying that 
the addition of up to 10% Al enhanced the textural            
properties of the prototype Zr-MOF. For all MB/MOF    
systems, high initial concentrations of MB were found to 
facilitate adsorption capacity.  

It can be concluded that the pseudo �rst-order model 
does not �t the experimental data well. While it can be       
generally applied to the initial period of the �rst step of the 
adsorption consistent with reports of most sorption studies 
in the literature the applicability of pseudo �rst-order       
mechanisms are restricted to a limited fraction of the        
beginning of the contact time [147]. �e Elovich and       
pseudo second-order models showed the highest correlation 
in all MOF/MB systems studied over a longer period of  
adsorption. Besides, adsorption kinetics obeyed the pseudo 
second order kinetics model nicely, based on the fact that 
the highest correlation coefficients (R2) were achieved with 
this model. 

Equilibrium data were tested using the Langmuir and 
Freundlich models, and were found to be best de�ned by the 
Freundlich isotherm. �e maximum adsorption capacity of 
the most efficient adsorbent was 49.26 mg/g for UiO-66-
10%Al. �is performance was compared with that of other 
porous adsorbents in previous studies. 

�e gained parameters from this study support the 
design and lay the foundations for establishing a continuous 
treatment process that removes MB from wastewater. 
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