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ABSTRACT: The availability of long-term river discharge data covering at least 
30 years is needed for proper hydrological studies, so the ability to predict river 
discharge is a matter of concern in the field of civil engineering. The Siak river in 
Pekanbaru c ity experiences overflowing water during the rainy season. One of the 
steps to prevent flooding on the Siak River is to utilize river discharge information, 
data-driven models utilize historical data to train or derive useful insights for pre-
dicting outputs, some data-driven models that are suitable for generating monthly 
historical data into new data include the Autoregressive Integrated Moving Average 
(ARIMA) method and the Thomas-Fiering method. The research begins by con-
ducting the Rescaled Adjusted Partial Sums (RAPS) test to test the homogeneity 
of the data, then the prediction of discharge data with several schemes using the 
ARIMA and Thomas-Fiering methods, then the performance comparison between 
the two models is carried out using MAPE, RMSE, Nash-Sutcliffe, and correlation 
coefficient r. From the research results, it was found that the Thomas-Fiering method 
tends to be more accurate for predicting 1-year monthly discharge as well as long-
term discharge, namely periods of 3, 5, and 7 years, with the best prediction being 
1-year discharge prediction using 5 years of observed discharge with MAPE, RMSE, 
Nash-Sutcliffe, and correlation coefficient r values of  7.42%, 26.76 m3s-1, 0.92, and 
0.96, respectively. This study could be a valuable reference for future studies in selec-
tion and further modification of data driven discharge simulation models. 
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1.  INTRODUCTION

The availability of long-term river discharge data covering at least 30 years is re-
quired for proper hydrological studies [1]. Due to the importance of river discharge 
data, so the ability to predict river discharge data is also a matter of concern in the 
field of civil engineering, this has led to an increasing need for time series hydrolog-
ical modeling that is able to imitate a series of historical discharge data of a river [2]. 
The evaluation and planning of water projects necessitate the forecasting of water 
resources using hydrological data spanning a sufficient time series. However, hydrol-
ogy researchers encounter  challenges due to the limited availability of monitored 
hydrological series over extended periods. Monitoring stations are sparse, and in 
many cases, data records are insufficient or absent [3].

The Siak River is a river that is administratively located entirely in Riau Province, 
passing through Rokan Hulu Regency, Kampar Regency, Bengkalis Regency, Peka-
nbaru City and Siak Regency [4]. According to the Decree of the Minister of Public 
Works Number 424/KPTS/M/2013 concerning the Water Resources Manage-
ment Pattern of the Siak River Basin, the Pekanbaru City area is an area that is often 
affected by flooding from the Siak River and the flood-prone area in Pekanbaru City 
reaches 8,755 ha, but the water level data recorded at the pekanbaru water gauge 
station is only 23 years of data. One of the steps to prevent flooding is to utilize river 
discharge information, the generated synthetic streamflow discharge is as important 
as the historical river discharge to study several feasible alternatives for planning, 
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design, and operation of water resources projects [5]. There are 
two main categories of prediction models: (i) knowledge-driven 
models and (ii) data-driven models. Knowledge-driven models 
are effectively applied to known physical characteristics of catch-
ments such as area, shape, slope, stream length, altitude, etc. These 
models, exemplified by rainfall-runoff modeling and empirical re-
lationships, rely on understanding the internal mechanisms of the 
system between input and output data. In contrast, data-driven 
or black box models do not explicitly account for these internal 
mechanisms. They perform well even when there is limited infor-
mation available about the physiographic characteristics of the 
catchment [6], data-driven models utilize historical data to train 
or derive useful insights for predicting outputs. The accuracy of 
forecasting is primarily influenced by two key factors: the duration 
and quality of historical data available [7]. Examples of black-box 
or data-driven models include artificial intelligence techniques, re-
gression models, and stochastic models. Some stochastic methods 
that are suitable for generating monthly historical data into new 
data include the Autoregressive Integrated Moving Average (ARI-
MA) method and the Thomas Fiering method [8]. An important 
reason for using statistical analysis in the field of hydrology is relat-
ed to natural phenomena, which involve uncertainties in space and 
time. There is no single hydrological model that gives an absolute 
percentage of success to the natural event process. The use of sta-
tistical methods accommodates the probailistic nature of the nat-
ural event process and the use of statistical methods is often very 
relevant.

The ARIMA method is known to have the advantage of in-
volving seasonal factors in the modeling [2], researchers prefer the 
ARIMA method because of its systematic procedures including 
identification, estimation, and diagnostic checking. In the pro-
cess of modeling using the ARIMA method, software assistance is 
needed and the ARIMA method also requires stationary data, effi-
cient execution and prediction with the ARIMA method requires 
a lot of research experience because it is a complex modeling tech-
nique, this is another weakness associated with this technique [6]. 
In contrast to this, the Thomas Fiering method is known to be sim-
pler, where Thomas and Fiering developed a model for generating 
monthly river flows that implicitly allows for non-stationarity in 
monthly flow data [9]. The Thomas-Fiering method treats the flow 
in each period as a linear function of the flow in the previous pe-
riod, is flexible and easy to use in Microsoft Excel [10]. However, 
compared to other methods such as ARIMA, the Thomas-Fiering 
method has a tendency to overestimate river flow especially in low 
flow months [11].

Previous research that has been done succeeded in generating 
62 years synthetic stream flow data used Thomas-Fiering for Ofu 
River and demonstrated that the generated synthetic data is about 
95.9% reliable implying that it could be used for hydrological stud-
ies and projects [11]. More so, Thomas-Fiering model generally 
underestimated streamflow in most simulation months. However, 
based on measures of goodness-of-fit, the model's performance 
was deemed adequate for generating synthetic monthly stream-
flow data for the Jakham river [10]. Furthermore, prediction of 
long-term (monthly) streamflow for an intermittent river using 
SARIMA, the Thomas-Fiering model, and ANN models and it was 
found that the Thomas-Fiering model, which is regression-based, 
was unable to perform adequately during periods of low flow. Ad-

ditionally, the ARIMA model demonstrated strong performance 
in predicting streamflow for the intermittent river, particularly in 
capturing peak or high discharge events better than other models 
[6]. ARIMA and a modified Thomas-Fiering model have also been 
used to analyze the time series of monthly rainfall data from the 
Tallafar station, the findings indicated that the modified Thom-
as-Fiering model was the most appropriate for representing the 
characteristics of the station [12].

The aim of this study is to predicting the discharge data of the 
Siak watershed, Pekanbaru water gauge station, with two data driv-
en models that belong to stochastic models, namely the ARIMA 
method with the help of Minitab software and the Thomas Fier-
ing method, which aims to see the accuracy of the two models in 
forecasting the discharge data of the Siak watershed (Pekanbaru 
Water Post). In general, application of Thomas-Fiering and ARI-
MA methods for generating synthetic streamflows is rare in Riau 
region, Indonesia. Therefore, this study was undertaken with the 
objective of developing and validating the monthly streamflow of 
Siak river, specifically Pekanbaru water gauge stasion using ARI-
MA dan Thomas-Fiering methods. Based on the previous studies 
that have been conducted, the ARIMA and Thomas-Fiering meth-
ods, which are data driven models, have different performance de-
pending on the pattern, trend, and length of data at each research 
location. The advantages and disadvantages of the two methods 
have also been presented. This study will look at how the two mod-
els work to predict discharge at one of the Siak River water gauge 
stations by creating several discharge prediction schemes with dif-
ferent variations of predicted and observed discharge.

2.  MATERIALS AND METHODS

2.1. Research location. Administratively, Pekanbaru water 
gauge station of Siak watershed located in Kampung Bandar Vil-
lage, Senapelan District, Pekanbaru City, Riau Province, with a 
geographical location of 00o 32' 27.2“ S Latitude 101o 26' 14.5” E 
Longitude. Figure 1 is location map of the Pekanbaru water gauge 
station, where the water level data is measured. 

2.2.	 Data availability. The data needed in this study was 
secondary data, specifically Automatic Water Level Recorder 
(AWLR) data from the Pekanbaru water gauge station, obtained 
from January 1, 2013, to December 31, 2022, through the Sumatra 
III River Basin Center. The water level data was subsequently con-
verted into discharge data using the calibration curve equation as 
follows size:
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2.3. Discharge data forecasting. Automatic Water Level 
Recorder (AWLR) data for 10 years (2013-2022) was converted 
into discharge data with a calibration equation, then consisten-
cy testing was carried out on the discharge data using Rescaled 
Adjusted Partial Sums (RAPS), after the data was known to be 
consistent, several discharge prediction schemes were made as 
shown in Table 1. The schemes were created with various lengths 
of observed discharge, ranging from a short period of 3 years to 
increasingly longer periods of 5 years, 7 years, and 9 years. The 

(1)

Where Q is the river flow discharge (m3s-1), and H is the water lev-
el (m).

Q = 6.029 × (H + 2.481)2.738 

J.Appl.Mat. and Tech. 2025, 6(2), 47-57

https://jamt.ejournal.unri.ac.id/index.php/jamt


Applied Materials and Technology

observation discharge data were utilized to predict 1 year period 
discharge, aiming to assess the ability of observation discharge 
with different lengths in predicting 1-year period discharge. Fur-
thermore, the observation discharge was also employed to predict 
long-term discharge, this was carried out to evaluate the ability of 
observation discharge with varying lengths to predict long-term 
discharge as well. The selection of the observation discharge length 
and the length of discharge to be predicted, as listed in Table 1, was 
based on the consideration that periods of 3, 5, 7, and 9 years were 
deemed capable of representing the prediction of discharge, start-
ing from short discharge data to long discharge data. After that, 
discharge prediction was carried out using the ARIMA and Thom-
as-Fiering methods according to the scheme. Then, after obtaining 
the predicted discharge, the accuracy level was measured with sev-
eral performance indicators such as MAPE, RMSE, Nash-Sutcliffe 
coefficient, and correlation coefficient r to assess the accuracy and 
capability of the method.

2.5. Thomas-Fiering method. Basically, the Thomas Fiering 
method is a natural Markovian with periodic parameters, namely 
the mean, standard deviation and correlation between consecutive 
data. The model consists of 12 regression equations, one for each 
month[13]. The equation is generally written as follows [9]:
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Figure 1.  The Study Location. 

Scheme Period of observed
discharge ussed

Period of discharge
to be predicted

I 3 years (2013-2015) 1 year (2016)

II 5 years (2013-2017) 1 year (2018)

III 7 years (2013-2019) 1 year (2020)

IV 9 years (2013-2021) 1 year (2022)

V 3 years (2013-2015) 7 years (2016-2022)

VI 5 years (2013-2017) 5 years (2018-2022)

VII 7 years (2013-2017) 3 years (2020-2022)

Table 1. Discharge prediction scheme.

2.4. Rescaled Adjusted Partial Sums (RAPS) consisten-
cy Test. To perform statistical analysis of hydrological data, it was 
assumed that the data was consistent. Therefore, before starting 
statistical analysis on hydrological data, it was important to iden-
tify and remove inconsistencies and inhomogeneities in the data. 
This action was necessary because these characteristics were unde-
sirable to persist in the future [13]. The data consistency test used 
for this research was Rescaled Adjusted Partial Sums (RAPS), with 
the equation as follows:

RAPS =
∑ (Qi-Q�)k

i=1

�∑ (Qi-Q�  )2

n
n
i=1

 
(2)

Where Qi  is i-th discharge data, Q�  is average discharge data, and 
n is total of the data.

Qij=Q� j+bj �Qij-1-Q� j-1�+tijsj�1-rj
2 

Where         is forecasted discharge (in the i-th year and j-th month), 
Q� j  is the j-th average discharge, Q  ij-1  is discharge in the i-th year 

(in the previous month), Q� j-1  is average discharge in the previous 
month, bj is regression coefficient, rj  is correlation coefficient, sj  is 
standard deviation, and tij  is normally distributed random number 
(in the i-th year and j-th month).

All parameters used in the Equation 2 such as regres-
sion coefficient, correlation coefficient, standard devia-
tion were calculated using the equations below as follows:

(3)

Sj=�
∑ (Qij

n
i=1 -Q� j)

2

n-1
 (4) 

rj=
∑ (Qij-Q� j)×(Qij-1-Q� ij-1)

�∑ (Qij
n
i=1 -Q� j)

2×∑ (Qij-1-Q� ij-1)2n
i=1

 (5) 

bj=
rj×Sj

Sj-1
 (6) 

 

(4)

(5)

(6)

A random number generator is an algorithm used to create 
a series of random numbers, either through manual counting or 
electronic (computer) computation. Random numbers are gen-
erated by obeying probabilities in the range of 0 to 1 and have a 
uniform distribution. The requirements for the generation of ran-
dom numbers include being random, non-repeating (Degener-
ative) and the return period usually appears very long [14]. The 
uniform random component provided by the computer could be 
converted into a normal distribution with the Box-Muller equa-
tion as follows:
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2.6.3. Potential model estimation. Model parameter es-
timation aimed to determine the estimated values of the ARIMA 
model parameters. The estimated parameters then had to be test-
ed to determine their significance in the model with hypothesis 
testing to test the significance of the parameters. At this estimation 
stage, mathematical calculation techniques were relatively com-
plex, so the help of software was used [21], in this research Minitab 
20 was used. The Hypothesis: (a) H0 = θ1 = 0 (Parameter is not 
significant), (b) H1 = θ1 ≠ 0 (Parameter is significant), with level 
of significance or α= 5%, H0 is rejected if p-value< α. 

t1=(-2 In u1)
1
2 × cos (2π × u2) (7) 

t2=(-2 In u1)
1
2 × sin (2π × u2) (8) 

 Where t1 and t2 are normally distributed random number and u1 

and u2  are uniformly distributed random numbers.

(7)

(8)

2.6. ARIMA method. Autoregressive Integrated Moving 
Average (ARIMA) is a time series model introduced by Box and 
Jenkins in 1976. The model in forecasting required data that was 
stationary in both mean and variance. Data that had not been sta-
tionary in variance needed to be transformed, and the transforma-
tion used was the Box-Cox transformation. Data that was not yet 
stationary in the mean needed to be differentiated. The differentia-
tion process was a process of looking for differences between data 
from one period to another in sequence, and the level of differen-
tiation process done was represented by d in ARIMA (p,d,q). In 
general, the form of ARIMA (p,d,q) as follows [15]:

ϕ(B) (1-B)dZ� t = θ0+θ(B)at (9) 

ϕ(B)=1-ϕ1B-…-ϕpBp (10) 

θ(B)=1-θ1B-…-θqBq (11) 

 

(9)

(10)

(11)

Where ϕ (B) is AR operator, θ (B) is MA operator, p is AR 
order, q is MA order, and d is the level of differencing process.

If the discharge data contained a seasonal element, which could 
be defined as a pattern that repeated regularly within a consistent 
time interval. It included the tendency to repeat patterns of behav-
ior in seasonal periods, generally a year for monthly data. Seasonal 
ARIMA models could solve time series consisting of non-seasonal 
and seasonal parts [16]. The general form of the seasonal ARIMA 
model or ARIMA (p,d,q) (P,D,Q)S with the equation as follows 
[17]:

ϕp(B)ΦP�BS�(1-B)d�1-BS�
D

Zt=θq(B)ΘQ(BS)at (12) 

 

(12)

Where p, d, and q is non-seasonal order, P, D,and Q is seasonal 
order, S is number of seasonal periods, and at  is residual at time t.

To obtain the value of AR and MA coefficients used in ARI-
MA, it is calculated using the non-linear least square method de-
veloped by Marquardt with a long iteration process [18].  In this 
study, the coefficient estimation process was carried out using Mi-
nitab software. The ARIMA modeling process consisted of several 
steps as follows:

2.6.1.  Model identification. Model identification was done 
to see whether the time series data was stationary or not, check-
ing data stationarity could be done by looking at the visual form of 
the time series plot or by examining the Autocorrelation Function 
(ACF) plot and the Partial Autocorrelation Function (PACF) plot. 
To identify stationarity in variance, the Box-Cox plot could also be 
used, data that was stationary in variance was characterized by a val-
ue of λ = 1, if the data was found to be non-stationary in variance, it 
could be made stationary through Box-Cox transformation, if it was 
found that the data was non-stationary in mean, it could be made 
stationary through the differencing process. Data that was not yet 
stationary in mean was indicated by the presence of a pattern that 
died down very slowly on the ACF and PACF plots [13]. Addition-

ally, it could also be characterized by the presence of lags that still 
exhibited patterns and contained seasonality [19]. Through the 
ACF and PACF plots, it could also be determined whether the data 
had a seasonal pattern, the seasonal pattern would be evident in the 
ACF and PACF lags that were significant in multiples of the season.

2.6.2.  Temporary model estimation. Temporary Model 
Estimation was done by analyzing the Autocorrelation Function 
(ACF) plot and Partial Autocorrelation Function (PACF) plot, the 
determination of p (AR order) was based on the partial autocorre-
lation function (PACF), and the determination of q (MA order) 
was based on the autocorrelation function (ACF). Autocorrelation 
Function is the term autocorrelation is used to explain the associ-
ation or mutual dependence between the values of the same pe-
riodic series in different periods [18] and Partial Autocorrelation 
Function is the partial autocorrelation measure is used to show the 
magnitude of the relationship between the current value of a varia-
ble and the previous values of the same variable (values for various 
time lags) assuming the influence of all other time lags is [18].  The 
way to determine the ARIMA Model based on the ACF and PACF 
plots was done according to the Table 2 [20]. 

ACF PACF Model

Cut off after lag 1 or lag 
2, seasonal lag is not sig-
nificant

Dying down Non seasonal 
MA (q = 1 or q 
= 2)

Cut off after lag L, non 
seasonal lag insignificant

Dying down Seasonal MA (Q 
= 1)

Cut off after lag 
L seasonal, non-seasonal 
lag cut off after lag 1 or 2

Dying down Non seasonal-
seasonal MA 
(q = 1 or q = 2; Q 
= 1)

Dying down Cut off after lag 1 or lag 
2, seasonal lag is not 
significant

Non seasonal 
AR (p = 1 or p 
= 2)

Dying down Cut off after lag L, non 
seasonal lag insignifi-
cant

Seasonal AR (P 
= 1)

Dying down Cut off after lag 
L seasonal, non-sea-
sonal lag cut off after 
lag 1 or 2

Non seasonal-
seasonal AR 
(p = 1 or p = 2; P 
= 1)

Dying down Dying down ARMA

Table 2. Determination of ARIMA model based on ACF and 
PACF plots.
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2.6.4. Diagnostic check. Diagnostic checks were done to 
determine the accuracy of the model after significant parameters 
were obtained so that a valid model could be obtained [22]. The 
diagnostic check done was the white noise residual assumption 
test with the Ljung Box test, which was carried out with the help 
of Minitab 20 software. The basic assumption that residuals were 
white noise meant that there was no correlation between residuals 
with a mean equal to zero and constant variance. The residual in-
dependence test (white noise) could be done using the Ljung-Box 
test statistic [23].  Hypothesis: (a) H0 = ρ1 = ρ2 =…= ρk  (residual 
white noise), (b) H1 = there is at least one value of  ρk ≠  0; k= 1, 2, 
…, k (residuals are not white noise), with significance level α  = 5, 
H0 is rejected if the p-value< α.

2.6.5. Performance indicator. 2.6.5.1. MAPE. Mean Abso-
lute Percent Error (MAPE) is a measure of average error in per-
centage terms. MAPE is the average absolute difference between 
the predicted value and the actual value, expressed as a percentage 
of the actual value [24]. MAPE accuracy criteria can be seen in 
Table 3 [25] . The MAPE value was calculated with the following 
eqution:

(13)MAPE=
100
n
�

�Qobservation - Qprediction�
Qobservation

 (13) 

 

MAPE value Criteria

<10% Very good

10% - 20% Good

20% - 50% Average

>50% Bad

Table 3. Mape accurary criteria.

2.6.5.2. RMSE. Mean Absolute Percent Error (MAPE) is a 
measure of The smaller the RMSE value (close to 0), indicating 
that the prediction results are more accurate [26]. RMSE value was 
calculated with the following equation: 

RMSE=�
∑ (Qobservation-Q𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 )2

n
 (14) 

 

(14)

2.6.5.3. Nash-Sutcliffe. The Nash-Sutcliffe efficiency test 
shows the accuracy of the correlation relationship between meas-
ured and calculated data [27]. Used to assess the validity of the 
model by comparing the model simulation results with observa-
tional data [28]. The Nash-Sutcliffe coefficient value was calculat-
ed with the following equation equation: 

NSE=1-
∑ (Qobservation-Qprediction )2n

i=1

∑ (Q�observation-Qprediction )2n
i=1

 (15) 

 

(15)

NSE value Criteria

0.75 < NSE < 1.00 Very Good

0.65 < NSE < 0.75 Good

0.50 < NSE < 0.65 Average

NSE ≤ 0.50 Bad

Table 4. Nash-sutcliffe accuracy critea.

2.6.5.4. Correlation coefficient r. The correlation coeffi-
cient illustrates the closeness of the relationship between these var-
iables. It should be noted that a high or low correlation coefficient 
value does not describe the cause-and-effect relationship between 
two or more variables, but only describes the linear relationship 
between these variables [30]. Correlation coefficient r value was 
calculated with the following equation:

r =
∑ (Qhit- Q�hit)×(Qobs-Q�obs)

�∑(Qhit- Q�hit)
2×∑(Qobs-Q�obs)

2
 (14) 

 

(16)

The grading criteria can be seen in Table 5 [31].

r coefficient value Correlation

0.90-1.00 Very good

0.70-0.90 Good

0.50-0.70 Average

0.30-0.50 Bad

0.00-0.30 No correlation

Table 5. Correlation coefficient accuracy criteria.

3. RESULT AND DISCUSSION

3.1. Rescaled adjusted partial sums test. Statistical anal-
ysis of hydrological data requires the assumption that the data is 
consistent. Therefore, before performing statistical analysis of 
hydrological data, it was necessary to identify and eliminate data 
inconsistencies and inhomogeneities, as these characteristics were 
undesirable in future projections. Table 6 showed the results of 
data consistency test using RAPS, where the value of Q√𝑛𝑛  was 
smaller than Q√𝑛𝑛  table or the value of 𝑅𝑅√𝑛𝑛  was smaller than  𝑅𝑅√𝑛𝑛 
table at the 99% trust level. Therefore, it can be concluded that the 
monthly discharge data from 2013-2022 was consistent and could 
be used for further analysis.

The Nash-Sutcliffe accuracy criteria can be seen in Table 4. be-
low [29]:
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3.2. Thomas-Fiering method discharge prediction. To 
predict discharge using the Thomas-Fiering method, several pa-
rameters were first calculated such as average discharge, standard 
deviation, correlation coefficient, and regression coefficient. Here 
is one of the calculations of thomas fiering discharge prediction 
for scheme prediction IV, in Table 7 listed the parameters of the 
discharge data for a period of 9 years (2013-2021). tj or normally 
distributed random numbers were obtained from Microsoft Ex-
cel in the form of uniformly distributed random numbers, which 
were then converted to normal distribution using the Box-Muller 
equation, the automatic random number generation process was 
repeated until the best predicted discharge was obtained. After 
obtaining all the parameters needed, the calculation of discharge 
prediction was carried out with the Thomas-Fiering equation. The 
comparison graph between predicted discharge and observed dis-
charge can be seen in Figure 8 through Figure 14.

52

Month Q√𝑛𝑛 Q√ntable R√n R√ntable Conclusion

Jan 1.15 1.29 1.15 1.38 Consistent

Feb 0.96 1.29 1.02 1.38 Consistent

Mar 0.92 1.29 0.92 1.38 Consistent

Apr 1.32 1.29 1.32 1.38 Consistent

May 0.92 1.29 0.92 1.38 Consistent

Jun 1.13 1.29 1.13 1.38 Consistent

Jul 1.16 1.29 1.16 1.38 Consistent

Aug 1.21 1.29 1.21 1.38 Consistent

Sep 0.83 1.29 0.83 1.38 Consistent

Oct 0.78 1.29 0.78 1.38 Consistent

Nov 0.55 1.29 1.01 1.38 Consistent

Dec 0.97 1.29 0.97 1.38 Consistent

Table 6.  RAPS data consistency test result at α = 0.01. 3.3. ARIMA method discharge prediction. The Box Cox 
plot performed on the discharge data for a period of  9 years (2013-
2021) for prediction schemes IV, showed the value of α = 0.00 as 
shown in Figure 2, indicating that the data had not been stationary 
in variance, therefore a Box-Cox transformation was done to sta-
tionarize the data, the transformation results showed that the data 
had become stationary in variance, indicated with α = 1 as shown 
in Figure 3.

Furthermore, after the data had become stationary in vari-
ance, it was checked whether the data had also become stationary 
in mean by looking at the Autocorrelation Function (ACF) plot 
and Partial Autocorrelation Function (PACF) plot. The ACF and 
PACF plots could be seen in Figure 4 and Figure 5.

Figure 2. Box Cox plots of  9 year average monthly discharge data 
(2013-2021).

Month Q� j m3s-1 Sj  m3s-1 rj bj tj 

Jan 386.58 75.59 0.44 0.26 0.29

Feb 377.85 143.15 0.69 1.32 -1.10

Mar 329.71 175.47 0.85 1.04 -0.45

Apr 304.00 130.60 0.67 0.50 0.35

May 322.67 107.86 0.65 0.54 1.02

Jun 237.09 48.17 0.62 0.28 1.06

Jul 233.84 68.01 0.33 0.47 0.59

Aug 254.98 62.43 0.91 0.84 0.15

Sep 244.89 52.27 0.72 0.60 1.65

Oct 294.41 71.61 0.97 1.33 0.19

Nov 497.28 148.33 0.52 1.07 1.15

Dec 566.35 128.39 0.31 0.27 -0.12

Table 7. Parameters required for Thomas-Fiering method-
discharge prediction.

Figure 3. Box Cox plots discharge data after Box Cox transfor-
mation.

J.Appl.Mat. and Tech. 2025, 6(2), 47-57

https://jamt.ejournal.unri.ac.id/index.php/jamt


Jamt.ejournal.unri.ac.idApplied Materials and Technology

53

Figure 4. ACF Plot of  Data after Box Cox transformation. Figure 5. PACF Plot of Data after Box Cox transformation.

Figure 6. CF Plot of Data after differencing d = 1 and D =1. Figure 7. PACF Plot of Data after differencing d = 1 and D = 1.

From Figure 4 and Figure 5, it was known that the data was not 
stationary in mean. This could be seen from the pattern of slow 
decline on the ACF plot and the presence of a patterned lag that 
still contained seasonality. For this reason, regular differencing (d 
= 1) and seasonal differencing (D = 1, S = 12) were applied. Then, 
a temporary model estimation could be carried out by examining 
the ACF and PACF plots of the data that had become stationary, as 
shown in Figure 6 and Figure 7.

It could be seen in the PACF plot Figure 7 that it appeared to 
be dying down, indicating an MA process. The value of order q 
(MA) observed in the ACF plot (Fig. 7 was significant at lag 2, so it 
was assumed that q was between 1 and 2. Then, the ACF plot was 
cut off at seasonal lag 12, so Q = 1 or 2. Several potential ARIMA 
models could have been formed as ARIMA (0,1,[1,2]) and ARI-
MA (0,1,[1,2]),(0,1,[1,2])12.

Model parameter estimation was carried out using Minitab 20 
software assistance on previously created ARIMA models. After 
the model parameters were estimated, they were then tested for 

Figure 8. Comparison graph of observed and predicted discharge 
of  scheme I.
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Figure 9. Comparison graph of observed and predicted discharge 
of  scheme II.

Figure 10. Comparison graph of observed and predicted dis-
charge of  scheme III.

Figure 11. Comparison graph of observed and predicted dis-
charge of  scheme IV.

Figure 12. Comparison graph of observed and predicted dis-
charge of  scheme V.

Figure 13. Comparison graph of observed and predicted dis-
charge of  scheme VI.

Figure 14. Comparison graph of observed and predicted dis-
charge of  scheme VII.
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significance by examining whether the p-value was <5% or not. 
The model parameters were considered significant if the p-value 
was <5%. Following that, the significant ARIMA model was tested 
with the Ljung-Box test to assess whether the residuals were white 
noise. If the p-value was >5%, then the model was considered qual-
ified to be used for discharge prediction. 

The results of the two tests found that the ARIMA (0,1,2)
(0,1,1)12 and ARIMA (0,1,2)(0,1,2)12 passed both tests, then the 
prediction of discharge was carried out with the two models, with 
the assessment of MAPE, RMSE, Nash-Sutcliffe, and the correla-
tion coefficient r, it was found that the ARIMA (0,1,2)(0,1,2)12 
was more accurate for predicting 1 year discharge (2022) using 9 
years of observed discharge (2013-2021). The comparison graph 
between predicted discharge and observed discharge can be seen 
in Figure 8 through Figure 14.

3.4. Model Performance Comparison. In Table 8 and 
9, it was evident that the ARIMA and Thomas-Fiering methods 
both had the best predicted discharge results for scheme II, spe-
cifically predicting 1 year of discharge using 5 years of observed 
discharge. To compare the ARIMA and Thomas-Fiering methods, 
the first compared the results of the assessment per parameter in all 
schemes, yielding the following results:

1.	 In the MAPE value of the entire scheme, the Thomas Fiering 
method led with 1 very good, 5 good, and 1 average, while 
the ARIMA method achieved 1 very good, 3 good, and 3 av-
erage.

2.	 In the Nash-Sutcliffe value of all schemes, the Thomas Fier-
ing method led with 2 very good and 5 bad, while the ARI-

MA method achieved 1 very good and 6 bad.
3.	 In the correlation coefficient (r) of all schemes, the Thomas 

Fiering method led with ratings of 3 very good  and 4 good 
correlations, while the ARIMA method achieved 1 very good, 
2 good, 3 average, and 1 bad correlation.

4.	 In the RMSE of all schemes, the Thomas Fiering method 
also performed better, with 5 out of 7 RMSE values across all 
schemes closer to 0 compared to the ARIMA method, indi-
cating better accuracy.

Then the next comparison was to compare the results of the 
accuracy assessment on the schemes with the best accuracy assess-
ment results on each method, where the Thomas-Fiering method 
got the best results on schemes I and II, while the ARIMA method 
got the best results on schemes II and VI. Based on Table 8 and 9, 
the Thomas-Fiering method excelled in each parameter, with the 
acquisition of MAPE ratings of 1 very good and 2 good, Nash-Sut-
cliffe 2 very good and 1 bad, correlation coefficient 3 very good, 
and RMSE with 2 of the 3 RMSE values closer to 0 than the ARI-
MA method.

Some other things that could be seen from the results of the 
discharge prediction and performance comparison of the two 
methods that were carried out were as follows:

1.	 From the prediction of discharge that was done, the Thom-
as-Fiering method tended to be more accurate for predicting 
1-year period discharge using 5-year period observation dis-
charge or shorter.

2.	 The Thomas-Fiering method was more accurate in long-term 
prediction than the ARIMA method based on accuracy as-

Scheme MAPE (%) Description Nash-Sutcliffe Description Correlation Coefficient (r) Description RMSE (m³s-1)

I 10.68 Good 0.76 Very Good 0.95 Very Good 45.86
II 7.42 Very Good 0.92 Very Good 0.96 Very Good 26.76
III 20.60 Average 0.36 Bad 0.73 Good 141.55
IV 14.18 Good 0.32 Bad 0.97 Very Good 73.90
V 16.89 Good 0.34 Bad 0.70 Good 111.72
VI 15.83 Good 0.44 Bad 0.74 Good 112.13
VII 17.13 Good 0.35 Bad 0.74 Good 121.44

Table 8.  Accuracy assessment by performance indicator of  Thomas-Fiering method.

Scheme MAPE (%) Description Nash-Sutcliffe Description Correlation Coefficient (r) Description RMSE (m³s-1)

I 22.71 Average -0.37 Bad 0.58 Average 109.17
II 7.48 Very Good 0.88 Very Good 0.95 Very Good 31.66
III 26.69 Average 0.03 Bad 0.41 Bad 173.78
IV 11.07 Good 0.50 Bad 0.78 Good 64.17
V 21.81 Average 0.18 Bad 0.61 Average 122.10
VI 17.73 Good 0.48 Bad 0.74 Good 98.40
VII 18.97 Good 0.29 Bad 0.64 Average 134.13

Table 9.  Accuracy assessment by performance indicator of  ARIMA method.
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sessment in scheme V, scheme VI, and scheme VII. This was 
thought to be because the Thomas-Fiering method was bet-
ter at predicting peak discharge that occurred outside the sea-
sonal period of 12, while the ARIMA method only focused 
on the 12 seasonal period. Although the seasonal period was 
indeed 12, there were times when the data trend changed to 
form other peaks outside the usual pattern. This could be 
seen from the comparison graph of observation discharge 
and predicted discharge in scheme VI and VII, in Figure 13 
and Figure 14.

4.  CONCLUSION

The Based on the prediction of monthly average discharge that 
has been carried out on the Siak River (Pekanbaru water gauge sta-
tion) using two data-driven models which are stochastic models, 
which are the ARIMA and Thomas-Fiering methods, it is found 
that both models work best for predicting 1-year discharge using 5 
years of observed discharge. Both methods did not perform better 
the longer the observation data was used, due to the increasingly 
random pattern and trend of the data as the length of the calibrat-
ed observation data period increased. The Thomas-Fiering meth-
od is more accurate in predicting discharge above 1 year than the 
ARIMA method based on accuracy assessment in schemes VI, and 
VII, as well as comparison graphs, this is because the Thomas-Fi-
ering method is better at predicting peak discharge that occurs 
outside the seasonal period, which is 12. Based on these points, 
it is obtained that the Thomas-Fiering method tends to be more 
accurate for the prediction of monthly average discharge on the 
Siak River (Pos Duga Air Pekanbaru), which is expected to be the 
basis for further research in the selection and further modification 
of data driven discharge simulation models. The limitation of this 
research is that it is applied to monthly average discharge that is 
not too fluctuative, the suggestion for further research is to apply 
data driven models for 15 daily discharge predictions, and can also 
make performance comparisons between data-driven models and 
conceptual models.
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