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ABSTRACT: The availability of long-term river discharge data covering at least
30 years is needed for proper hydrological studies, so the ability to predict river
discharge is a matter of concern in the field of civil engineering. The Siak river in
Pekanbaru c ity experiences overflowing water during the rainy season. One of the
steps to prevent flooding on the Siak River is to utilize river discharge information,
data-driven models utilize historical data to train or derive useful insights for pre-
dicting outputs, some data-driven models that are suitable for generating monthly
historical data into new data include the Autoregressive Integrated Moving Average
(ARIMA) method and the Thomas-Fiering method. The research begins by con-
ducting the Rescaled Adjusted Partial Sums (RAPS) test to test the homogeneity
of the data, then the prediction of discharge data with several schemes using the
ARIMA and Thomas-Fiering methods, then the performance comparison between
the two models is carried out using MAPE, RMSE, Nash-Sutcliffe, and correlation
coefficient r. From the research results, it was found that the Thomas-Fiering method
tends to be more accurate for predicting 1-year monthly discharge as well as long-
term discharge, namely periods of 3, 5, and 7 years, with the best prediction being
1-year discharge prediction using S years of observed discharge with MAPE, RMSE,
Nash-Sutcliffe, and correlation coefficient r values of 7.42%, 26.76 m’s™, 0.92, and
0.96, respectively. This study could be a valuable reference for future studies in selec-
tion and further modification of data driven discharge simulation models.

Keywords: Siak watershed, Stream flow prediction, Data driven model, ARIMA,
Thomas-fiering

1. INTRODUCTION

The availability of long-term river discharge data covering at least 30 years is re-
quired for proper hydrological studies [1]. Due to the importance of river discharge
data, so the ability to predict river discharge data is also a matter of concern in the
field of civil engineering, this has led to an increasing need for time series hydrolog-
ical modeling that is able to imitate a series of historical discharge data of a river [2].
The evaluation and planning of water projects necessitate the forecasting of water
resources using hydrological data spanning a sufficient time series. However, hydrol-
ogy researchers encounter challenges due to the limited availability of monitored
hydrological series over extended periods. Monitoring stations are sparse, and in
many cases, data records are insufficient or absent [3].

The Siak River is a river that is administratively located entirely in Riau Province,
passing through Rokan Hulu Regency, Kampar Regency, Bengkalis Regency, Peka-
nbaru City and Siak Regency [4]. According to the Decree of the Minister of Public
Works Number 424/KPTS/M/2013 concerning the Water Resources Manage-
ment Pattern of the Siak River Basin, the Pekanbaru City area is an area that is often
affected by flooding from the Siak River and the flood-prone area in Pekanbaru City
reaches 8,755 ha, but the water level data recorded at the pekanbaru water gauge
station is only 23 years of data. One of the steps to prevent flooding is to utilize river
discharge information, the generated synthetic streamflow discharge is as important
as the historical river discharge to study several feasible alternatives for planning,
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design, and operation of water resources projects [S]. There are
two main categories of prediction models: (i) knowledge-driven
models and (ii) data-driven models. Knowledge-driven models
are effectively applied to known physical characteristics of catch-
ments such as area, shape, slope, stream length, altitude, etc. These
models, exemplified by rainfall-runoff modeling and empirical re-
lationships, rely on understanding the internal mechanisms of the
system between input and output data. In contrast, data-driven
or black box models do not explicitly account for these internal
mechanisms. They perform well even when there is limited infor-
mation available about the physiographic characteristics of the
catchment [6], data-driven models utilize historical data to train
or derive useful insights for predicting outputs. The accuracy of
forecasting is primarily influenced by two key factors: the duration
and quality of historical data available [7]. Examples of black-box
or data-driven models include artificial intelligence techniques, re-
gression models, and stochastic models. Some stochastic methods
that are suitable for generating monthly historical data into new
data include the Autoregressive Integrated Moving Average (ARI-
MA) method and the Thomas Fiering method [8]. An important
reason for using statistical analysis in the field of hydrology is relat-
ed to natural phenomena, which involve uncertainties in space and
time. There is no single hydrological model that gives an absolute
percentage of success to the natural event process. The use of sta-
tistical methods accommodates the probailistic nature of the nat-
ural event process and the use of statistical methods is often very
relevant.

The ARIMA method is known to have the advantage of in-
volving seasonal factors in the modeling [2], researchers prefer the
ARIMA method because of its systematic procedures including
identification, estimation, and diagnostic checking. In the pro-
cess of modeling using the ARIMA method, software assistance is
needed and the ARIMA method also requires stationary data, effi-
cient execution and prediction with the ARIMA method requires
alot of research experience because it is a complex modeling tech-
nique, this is another weakness associated with this technique [6].
In contrast to this, the Thomas Fiering method is known to be sim-
pler, where Thomas and Fiering developed a model for generating
monthly river flows that implicitly allows for non-stationarity in
monthly flow data [9]. The Thomas-Fiering method treats the flow
in each period as a linear function of the flow in the previous pe-
riod, is flexible and easy to use in Microsoft Excel [10]. However,
compared to other methods such as ARIMA, the Thomas-Fiering
method has a tendency to overestimate river flow especially in low
flow months [11].

Previous research that has been done succeeded in generating
62 years synthetic stream flow data used Thomas-Fiering for Ofu
River and demonstrated that the generated synthetic data is about
95.9% reliable implying that it could be used for hydrological stud-
ies and projects [11]. More so, Thomas-Fiering model generally
underestimated streamflow in most simulation months. However,
based on measures of goodness-of-fit, the model's performance
was deemed adequate for generating synthetic monthly stream-
flow data for the Jakham river [10]. Furthermore, prediction of
long-term (monthly) streamflow for an intermittent river using
SARIMA, the Thomas-Fiering model, and ANN models and it was
found that the Thomas-Fiering model, which is regression-based,
was unable to perform adequately during periods of low flow. Ad-
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ditionally, the ARIMA model demonstrated strong performance
in predicting streamflow for the intermittent river, particularly in
capturing peak or high discharge events better than other models
[6]. ARIMA and a modified Thomas-Fiering model have also been
used to analyze the time series of monthly rainfall data from the
Tallafar station, the findings indicated that the modified Thom-
as-Fiering model was the most appropriate for representing the
characteristics of the station [12].

The aim of this study is to predicting the discharge data of the
Siak watershed, Pekanbaru water gauge station, with two data driv-
en models that belong to stochastic models, namely the ARIMA
method with the help of Minitab software and the Thomas Fier-
ing method, which aims to see the accuracy of the two models in
forecasting the discharge data of the Siak watershed (Pekanbaru
Water Post). In general, application of Thomas-Fiering and ARI-
MA methods for generating synthetic streamflows is rare in Riau
region, Indonesia. Therefore, this study was undertaken with the
objective of developing and validating the monthly streamflow of
Siak river, specifically Pekanbaru water gauge stasion using ARI-
MA dan Thomas-Fiering methods. Based on the previous studies
that have been conducted, the ARIMA and Thomas-Fiering meth-
ods, which are data driven models, have different performance de-
pending on the pattern, trend, and length of data at each research
location. The advantages and disadvantages of the two methods
have also been presented. This study will look at how the two mod-
els work to predict discharge at one of the Siak River water gauge
stations by creating several discharge prediction schemes with dif-
ferent variations of predicted and observed discharge.

2. MATERIALS AND METHODS

2.1. Research location. Administratively, Pekanbaru water
gauge station of Siak watershed located in Kampung Bandar Vil-
lage, Senapelan District, Pekanbaru City, Riau Province, with a
geographical location of 00° 32' 27.2“ S Latitude 101°26' 14.5” E
Longitude. Figure 1 is location map of the Pekanbaru water gauge
station, where the water level data is measured.

2.2. Data availability. The data needed in this study was
secondary data, specifically Automatic Water Level Recorder
(AWLR) data from the Pekanbaru water gauge station, obtained
from January 1,2013, to December 31, 2022, through the Sumatra
III River Basin Center. The water level data was subsequently con-
verted into discharge data using the calibration curve equation as

follows size:

2.738

Q=6.029 x (H +2.481) (1)

Where Q is the river flow discharge (m®s), and H is the water lev-
el (m).

2.3. Discharge data forecasting. Automatic Water Level
Recorder (AWLR) data for 10 years (2013-2022) was converted
into discharge data with a calibration equation, then consisten-
cy testing was carried out on the discharge data using Rescaled
Adjusted Partial Sums (RAPS), after the data was known to be
consistent, several discharge prediction schemes were made as
shown in Table 1. The schemes were created with various lengths
of observed discharge, ranging from a short period of 3 years to
increasingly longer periods of 5 years, 7 years, and 9 years. The
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Figure 1. The Study Location.

observation discharge data were utilized to predict 1 year period
discharge, aiming to assess the ability of observation discharge
with different lengths in predicting 1-year period discharge. Fur-
thermore, the observation discharge was also employed to predict
long-term discharge, this was carried out to evaluate the ability of
observation discharge with varying lengths to predict long-term
discharge as well. The selection of the observation discharge length
and the length of discharge to be predicted, as listed in Table 1, was
based on the consideration that periods of 3, 5, 7, and 9 years were
deemed capable of representing the prediction of discharge, start-
ing from short discharge data to long discharge data. After that,
discharge prediction was carried out using the ARIMA and Thom-
as-Fiering methods according to the scheme. Then, after obtaining
the predicted discharge, the accuracy level was measured with sev-
eral performance indicators such as MAPE, RMSE, Nash-Sutcliffe
coeflicient, and correlation coeflicient r to assess the accuracy and
capability of the method.

Table 1. Discharge prediction scheme.

Scheme Pgriod of observed Period of discharge
discharge ussed to be predicted

I 3 years (2013-2015) 1 year (2016)

I S years (2013-2017) 1year (2018)

I 7 years (2013-2019) 1 year (2020)

v 9 years (2013-2021) 1 year (2022)

A% 3 years (2013-2015) 7 years (2016-2022)
VI S years (2013-2017) S years (2018-2022)
VII 7 years (2013-2017) 3 years (2020-2022)
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2.4, Rescaled Adjusted Partial Sums (RAPS) consisten-
cy Test. To perform statistical analysis of hydrological data, it was
assumed that the data was consistent. Therefore, before starting
statistical analysis on hydrological data, it was important to iden-
tify and remove inconsistencies and inhomogeneities in the data.
This action was necessary because these characteristics were unde-
sirable to persist in the future [13]. The data consistency test used
for this research was Rescaled Adjusted Partial Sums (RAPS), with
the equation as follows:

©(Q-Q)

RAPS =

)

Where Qi is i-th discharge data, ( is average discharge data, and
n is total of the data.
2.5.Thomas-Fiering method. Basically, the Thomas Fiering
method is a natural Markovian with periodic parameters, namely
the mean, standard deviation and correlation between consecutive
data. The model consists of 12 regression equations, one for each
month[13]. The equation is generally written as follows [9]:
Q=0 +b; (Q1-Qy1 ) Hysy [ 157 (3)
Where Qij is forecasted discharge (in the i-th year and j-th month),
(_)]. is the j-th average discharge, Qij-1 is discharge in the i-th year
(in the previous month), Q, , is average discharge in the previous
month, b; is regression coefficient, r; is correlation coefficient, s; is
standard deviation, and t;; is normally distributed random number
(in the i-th year and j-th month).
All parameters used in the Equation 2 such as regres-
sion coefficient,
tion were calculated using the equations below as follows:

correlation coefficient, standard devia-

?:1 (Qij 'Gj)z

n-1

(4)

Z (Qij'(jj)x(Qij_l'Qij_l)
rj:
JZ?:I (Qij 'Qj)zx 2{1:1 (Qij_l'Qij_l)z

(5)

1;xS;

S

bj:

(6)

A random number generator is an algorithm used to create
a series of random numbers, either through manual counting or
electronic (computer) computation. Random numbers are gen-
erated by obeying probabilities in the range of 0 to 1 and have a
uniform distribution. The requirements for the generation of ran-
dom numbers include being random, non-repeating (Degener-
ative) and the return period usually appears very long [14]. The
uniform random component provided by the computer could be
converted into a normal distribution with the Box-Muller equa-
tion as follows:
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(7)

1
t;=(-2Inu;)2 x cos (2m x u,)

1
t,=(-2Inu;)2 xsin (2w x u,)

(8)

Where t, and t, are normally distributed random number and u,
and u, are uniformly distributed random numbers.

2.6. ARIMA method. Autoregressive Integrated Moving
Average (ARIMA) is a time series model introduced by Box and
Jenkins in 1976. The model in forecasting required data that was
stationary in both mean and variance. Data that had not been sta-
tionary in variance needed to be transformed, and the transforma-
tion used was the Box-Cox transformation. Data that was not yet
stationary in the mean needed to be differentiated. The differentia-
tion process was a process of looking for differences between data
from one period to another in sequence, and the level of differen-
tiation process done was represented by d in ARIMA (p,d,q). In
general, the form of ARIMA (p,d,q) as follows [15]:

¢(B) (1-B)'Z, = 0,+0(B)a, )

(10)
(11)

Where ¢ (B) is AR operator, 8 (B) is MA operator, p is AR
order, q is MA order, and d is the level of differencing process.

Ifthe discharge data contained a seasonal element, which could
be defined as a pattern that repeated regularly within a consistent
time interval. It included the tendency to repeat patterns of behav-
ior in seasonal periods, generally a year for monthly data. Seasonal
ARIMA models could solve time series consisting of non-seasonal
and seasonal parts [16]. The general form of the seasonal ARIMA
model or ARIMA (p,d,q) (PBD,Q)S with the equation as follows
[17]:

(B)=1-4,B-...-¢,B"

0(B)=1-0,B-...-0,B

8, (B)0(BS)(1-B)(1-B%) " Z~0,(B)O(B")a, (12)

Where p, d, and q is non-seasonal order, P, D,and Q is seasonal
order, S is number of seasonal periods, and a, is residual at time t.

To obtain the value of AR and MA coeflicients used in ARI-
MA, it is calculated using the non-linear least square method de-
veloped by Marquardt with a long iteration process [18]. In this
study, the coefficient estimation process was carried out using Mi-
nitab software. The ARIMA modeling process consisted of several
steps as follows:

2.6.1. Model identification. Model identification was done
to see whether the time series data was stationary or not, check-
ing data stationarity could be done by looking at the visual form of
the time series plot or by examining the Autocorrelation Function
(ACF) plot and the Partial Autocorrelation Function (PACF) plot.
To identify stationarity in variance, the Box-Cox plot could also be
used, data that was stationary in variance was characterized by a val-
ue of A = 1, if the data was found to be non-stationary in variance, it
could be made stationary through Box-Cox transformation, if it was
found that the data was non-stationary in mean, it could be made
stationary through the differencing process. Data that was not yet
stationary in mean was indicated by the presence of a pattern that
died down very slowly on the ACF and PACF plots [13]. Addition-
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ally, it could also be characterized by the presence of lags that still
exhibited patterns and contained seasonality [19]. Through the
ACF and PACEF plots, it could also be determined whether the data
had a seasonal pattern, the seasonal pattern would be evident in the
ACF and PACF lags that were significant in multiples of the season.

2.6.2. Temporary model estimation. Temporary Model
Estimation was done by analyzing the Autocorrelation Function
(ACF) plot and Partial Autocorrelation Function (PACF) plot, the
determination of p (AR order) was based on the partial autocorre-
lation function (PACF), and the determination of q (MA order)
was based on the autocorrelation function (ACF). Autocorrelation
Function is the term autocorrelation is used to explain the associ-
ation or mutual dependence between the values of the same pe-
riodic series in different periods [18] and Partial Autocorrelation
Function is the partial autocorrelation measure is used to show the
magnitude of the relationship between the current value of a varija-
ble and the previous values of the same variable (values for various
time lags) assuming the influence of all other time lags is [18]. The
way to determine the ARIMA Model based on the ACF and PACF
plots was done according to the Table 2 [20].

Table 2. Determination of ARIMA model based on ACF and
PACEF plots.

ACF PACF Model

Cut off after lag 1 or lag Dying down Non seasonal

2, seasonal lag is not sig- MA(q=1lorq

nificant =2)

Cut off after lag L, non Dying down Seasonal MA (Q

seasonal lag insignificant =1)

Cut off after lag Dying down Non seasonal-

L seasonal, non-seasonal seasonal MA

lag cut off after lag 1 or 2 (@=lorq=2;Q

=1)

Dying down Cut offafterlag 1 orlag  Non seasonal
2, seasonal lag is not AR (p =1 or p
significant =2)

Dying down Cut off after lag L, non  Seasonal AR (P
seasonal lag insignifi- =1)
cant

Dying down Cut off after lag Non seasonal-
L seasonal, non-sea- seasonal AR
sonal lag cut off after (p=1lorp=2;P
lag 1 or2 =1)

Dying down Dying down ARMA

2.6.3. Potential model estimation. Model parameter es-
timation aimed to determine the estimated values of the ARIMA
model parameters. The estimated parameters then had to be test-
ed to determine their significance in the model with hypothesis
testing to test the significance of the parameters. At this estimation
stage, mathematical calculation techniques were relatively com-
plex, so the help of software was used [21], in this research Minitab
20 was used. The Hypothesis: (a) Hp = 81 = 0 (Parameter is not
significant), (b) H1 = 61 = 0 (Parameter is significant), with level
of significance or a= 5%, H is rejected if p-value< a.
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2.6.4. Diagnostic check. Diagnostic checks were done to
determine the accuracy of the model after significant parameters
were obtained so that a valid model could be obtained [22]. The
diagnostic check done was the white noise residual assumption
test with the Ljung Box test, which was carried out with the help
of Minitab 20 software. The basic assumption that residuals were
white noise meant that there was no correlation between residuals
with a mean equal to zero and constant variance. The residual in-
dependence test (white noise) could be done using the Ljung-Box
test statistic [23]. Hypothesis: (a) Hy=pq =p2=...= pk (residual
white noise), (b) H1 = there is at least one value of pk = 0;k=1,2,
.., k (residuals are not white noise), with significance level a =5,
HJ is rejected if the p-value< a.

2.6.5. Performance indicator. 2.6.5.1. MAPE. Mean Abso-
lute Percent Error (MAPE) is a measure of average error in per-
centage terms. MAPE is the average absolute difference between
the predicted value and the actual value, expressed as a percentage
of the actual value [24]. MAPE accuracy criteria can be seen in
Table 3 [25] . The MAPE value was calculated with the following
eqution:

(13)

MAPE= @ Z |Q0bservation - Qprediction
n Q

observation

Table 3. Mape accurary criteria.

MAPE value Criteria
<10% Very good
10% - 20% Good
20% - 50% Average
>50% Bad

2.6.5.2. RMSE. Mean Absolute Percent Error (MAPE) is a
measure of The smaller the RMSE value (close to 0), indicating
that the prediction results are more accurate [26]. RMSE value was
calculated with the following equation:

(14)

2
RMSEZ\/Z (Qobservation_Qprediction )

n

2.6.5.3. Nash-Sutcliffe. The Nash-Sutcliffe efficiency test
shows the accuracy of the correlation relationship between meas-
ured and calculated data [27]. Used to assess the validity of the
model by comparing the model simulation results with observa-
tional data [28]. The Nash-Sutcliffe coefficient value was calculat-
ed with the following equation equation:

n 2
i=1 (Qobservation-Qprediction)
3 (15)

NSE=1- —
n
i=1 (Qobscrvation_Qprediction)
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The Nash-Sutcliffe accuracy criteria can be seen in Table 4. be-

low [29]:

Table 4. Nash-sutcliffe accuracy critea.

NSE value Criteria
0.75 < NSE < 1.00 Very Good
0.65 < NSE < 0.75 Good

0.50 < NSE < 0.65 Average
NSE <0.50 Bad

2.6.5.4. Correlation coefficient r. The correlation coeffi-
cient illustrates the closeness of the relationship between these var-
iables. It should be noted that a high or low correlation coefficient
value does not describe the cause-and-effect relationship between
two or more variables, but only describes the linear relationship
between these variables [30]. Correlation coefficient r value was
calculated with the following equation:

_ XQy Qi) (Qups Q)
JZ(tht_ tht)zXZ((‘)Obs_Qobs)2

(16)

The grading criteria can be seen in Table 5 [31].

Table 5. Correlation coefficient accuracy criteria.

r coefficient value Correlation
0.90-1.00 Very good
0.70-0.90 Good
0.50-0.70 Average
0.30-0.50 Bad

0.00-0.30 No correlation

3. RESULT AND DISCUSSION

3.1. Rescaled adjusted partial sums test. Statistical anal-
ysis of hydrological data requires the assumption that the data is
consistent. Therefore, before performing statistical analysis of
hydrological data, it was necessary to identify and eliminate data
inconsistencies and inhomogeneities, as these characteristics were
undesirable in future projections. Table 6 showed the results of
data consistency test using RAPS, where the value of Qvn was
smaller than Q+v/n table or the value of Rv/n was smaller than Rvn
table at the 99% trust level. Therefore, it can be concluded that the
monthly discharge data from 2013-2022 was consistent and could
be used for further analysis.
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Table 6. RAPS data consistency test result at a = 0.01.

Month Qvn Qvnuwie Rvn Rvnume Conclusion
Jan 1.1S 1.29 1.1S 138 Consistent
Feb 096 129 1.02 1.38 Consistent
Mar 0.92 1.29 0.92 1.38 Consistent
Apr 132 129 132 1.38 Consistent
May 092 129 092 138 Consistent
Jun .13 129 1.13  1.38 Consistent
Jul 1.16 129 1.16 1.38 Consistent
Aug 1.21 1.29 121  1.38 Consistent
Sep 0.83 129 083 1.38 Consistent
Oct 0.78 1.29 0.78 1.38 Consistent
Nov 055 129 1.01 1.38 Consistent
Dec 0.97 1.29 097 1.38 Consistent

3.2. Thomas-Fiering method discharge prediction. To
predict discharge using the Thomas-Fiering method, several pa-
rameters were first calculated such as average discharge, standard
deviation, correlation coefficient, and regression coeflicient. Here
is one of the calculations of thomas fiering discharge prediction
for scheme prediction IV, in Table 7 listed the parameters of the
discharge data for a period of 9 years (2013-2021). tj or normally
distributed random numbers were obtained from Microsoft Ex-
cel in the form of uniformly distributed random numbers, which
were then converted to normal distribution using the Box-Muller
equation, the automatic random number generation process was
repeated until the best predicted discharge was obtained. After
obtaining all the parameters needed, the calculation of discharge
prediction was carried out with the Thomas-Fiering equation. The
comparison graph between predicted discharge and observed dis-
charge can be seen in Figure 8 through Figure 14.

Table 7. Parameters required for Thomas-Fiering method-
discharge prediction.

Month Qj m’s'  Sm’s! g b t

Jan 386.58 75.59 044 026 029
Feb 377.85 143.15 0.69 132 -1.10
Mar 329.71 175.47 085 1.04 -0.45
Apr 304.00 130.60  0.67 0.50 0.3S
May 322.67 107.86 0.65 0.54 1.02
Jun 237.09 48.17 0.62 028 1.06
Jul 233.84 68.01 033 047 0.59
Aug 254.98 62.43 091 0.84 0.15
Sep 244.89 52.27 0.72  0.60 1.65
Oct 294.41 71.61 097 133 0.19
Nov 497.28 148.33 052 1.07 1.1S§
Dec 566.35 12839 031 027 -0.12

Jamt.ejournal.unri.ac.id -

3.3. ARIMA method discharge prediction. The Box Cox
plot performed on the discharge data for a period of 9 years (2013-
2021) for prediction schemes IV, showed the value of a = 0.00 as
shown in Figure 2, indicating that the data had not been stationary
in variance, therefore a Box-Cox transformation was done to sta-
tionarize the data, the transformation results showed that the data
had become stationary in variance, indicated with a = 1 as shown
in Figure 3.

Furthermore, after the data had become stationary in vari-
ance, it was checked whether the data had also become stationary
in mean by looking at the Autocorrelation Function (ACF) plot
and Partial Autocorrelation Function (PACF) plot. The ACF and
PACE plots could be seen in Figure 4 and Figure S.

Lower CL Upper CL
4501 . A
/ (using 95.0% confidence)
400 Estimate 019
Lower CL -0.64
Upper CL 0.28
350- i
/ Rounded Value  0.00
300 74

StDev

250 /
2001 /

150 /

100 /
.
W‘ Limit

50

Figure 2. Box Cox plots of 9 year average monthly discharge data
(2013-2021).
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Figure 3. Box Cox plots discharge data after Box Cox transfor-
mation.
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Autocorrelation Function for Data After Box Cox Transformation
(with 5% significance limits for the autocorrelations)
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Figure 4. ACF Plot of Data after Box Cox transformation.

Partial Autocorrelation Function for Data After Box Cox Transformation
(with 5% significance limits for the partial autocorrelations)

1.0
0.8
0.6

0.41

021
0'0"|||'||'|||"|I|“I|||||I I||| |||"|

021 1

Partial Autocorrelation

0.4
06
0.8

: ; ; + + } + + - ; +

1 5 10 15 20 25 30 35 40 45 50 55 60
Lag

Figure 5. PACF Plot of Data after Box Cox transformation.
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Figure 6. CF Plot of Data after differencingd =1 and D =1.
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Figure 7. PACF Plot of Data after differencingd=1and D = 1.
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Figure 8. Comparison graph of observed and predicted discharge
of scheme L.

From Figure 4 and Figure S, it was known that the data was not
stationary in mean. This could be seen from the pattern of slow
decline on the ACF plot and the presence of a patterned lag that
still contained seasonality. For this reason, regular differencing (d
= 1) and seasonal differencing (D = 1, S = 12) were applied. Then,
a temporary model estimation could be carried out by examining
the ACF and PACEF plots of the data that had become stationary, as
shown in Figure 6 and Figure 7.

It could be seen in the PACF plot Figure 7 that it appeared to
be dying down, indicating an MA process. The value of order q
(MA) observed in the ACF plot (Fig. 7 was significant at lag 2, so it
was assumed that q was between 1 and 2. Then, the ACF plot was
cut off at seasonal lag 12, so Q = 1 or 2. Several potential ARIMA
models could have been formed as ARIMA (0,1,[1,2]) and ARI-
MA (0,1,[1,2]),(0,1,[1,2])12.

Model parameter estimation was carried out using Minitab 20
software assistance on previously created ARIMA models. After
the model parameters were estimated, they were then tested for
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Figure 9. Comparison graph of observed and predicted discharge
of scheme II.
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Figure 10. Comparison graph of observed and predicted dis-
charge of scheme IIL
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Figure 11. Comparison graph of observed and predicted dis-
charge of scheme IV.
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Figure 12. Comparison graph of observed and predicted dis-
charge of scheme V.
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Figure 13. Comparison graph of observed and predicted dis-
charge of scheme VL.
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Table 8. Accuracy assessment by performance indicator of Thomas-Fiering method.

Scheme MAPE (%) Description Nash-Sutcliffe  Description ~ Correlation Coefficient (r) Description RMSE (m3s)
I 10.68 Good 0.76 Very Good 0.95 Very Good ~ 45.86

I 7.42 Very Good 0.92 Very Good 0.96 Very Good  26.76

I 20.60 Average 0.36 Bad 0.73 Good 141.55

v 14.18 Good 0.32 Bad 0.97 Very Good ~ 73.90

A% 16.89 Good 0.34 Bad 0.70 Good 111.72

VI 15.83 Good 0.44 Bad 0.74 Good 112.13

VIL 17.13 Good 0.35 Bad 0.74 Good 121.44

Table 9. Accuracy assessment by performance indicator of ARIMA method.

Scheme MAPE (%) Description  Nash-Sutcliffe  Description ~ Correlation Coefficient (r) Description RMSE (m3s)
I 22.71 Average -0.37 Bad 0.58 Average 109.17

II 7.48 Very Good 0.88 Very Good 0.95 Very Good  31.66

I 26.69 Average 0.03 Bad 0.41 Bad 173.78

v 11.07 Good 0.50 Bad 0.78 Good 64.17

\Y% 21.81 Average 0.18 Bad 0.61 Average 122.10

VI 17.73 Good 0.48 Bad 0.74 Good 98.40

VII 18.97 Good 0.29 Bad 0.64 Average 134.13

significance by examining whether the p-value was <5% or not.
The model parameters were considered significant if the p-value
was <5%. Following that, the significant ARIMA model was tested
with the Ljung-Box test to assess whether the residuals were white
noise. If the p-value was >5%, then the model was considered qual-
ified to be used for discharge prediction.

The results of the two tests found that the ARIMA (0,1,2)
(0,1,1)12and ARIMA (0,1,2)(0,1,2) 12 passed both tests, then the
prediction of discharge was carried out with the two models, with
the assessment of MAPE, RMSE, Nash-Sutcliffe, and the correla-
tion coefficient r, it was found that the ARIMA (0,1,2)(0,1,2)12
was more accurate for predicting 1 year discharge (2022) using 9
years of observed discharge (2013-2021). The comparison graph
between predicted discharge and observed discharge can be seen
in Figure 8 through Figure 14.

3.4. Model Performance Comparison. In Table 8 and
9, it was evident that the ARIMA and Thomas-Fiering methods
both had the best predicted discharge results for scheme II, spe-
cifically predicting 1 year of discharge using 5 years of observed
discharge. To compare the ARIMA and Thomas-Fiering methods,
the first compared the results of the assessment per parameter in all
schemes, yielding the following results:

1. Inthe MAPE value of the entire scheme, the Thomas Fiering
method led with 1 very good, 5 good, and 1 average, while
the ARIMA method achieved 1 very good, 3 good, and 3 av-
erage.

. In the Nash-Sutcliffe value of all schemes, the Thomas Fier-
ing method led with 2 very good and $ bad, while the ARI-
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MA method achieved 1 very good and 6 bad.
In the correlation coefficient (r) of all schemes, the Thomas
Fiering method led with ratings of 3 very good and 4 good
correlations, while the ARIMA method achieved 1 very good,
2 good, 3 average, and 1 bad correlation.
In the RMSE of all schemes, the Thomas Fiering method
also performed better, with 5 out of 7 RMSE values across all
schemes closer to 0 compared to the ARIMA method, indi-
cating better accuracy.
Then the next comparison was to compare the results of the
accuracy assessment on the schemes with the best accuracy assess-
ment results on each method, where the Thomas-Fiering method
got the best results on schemes I and II, while the ARIMA method
got the best results on schemes II and VI. Based on Table 8 and 9,
the Thomas-Fiering method excelled in each parameter, with the
acquisition of MAPE ratings of 1 very good and 2 good, Nash-Sut-
cliffe 2 very good and 1 bad, correlation coefficient 3 very good,
and RMSE with 2 of the 3 RMSE values closer to 0 than the ARI-
MA method.
Some other things that could be seen from the results of the
discharge prediction and performance comparison of the two
methods that were carried out were as follows:
1. From the prediction of discharge that was done, the Thom-
as-Fiering method tended to be more accurate for predicting
1-year period discharge using S-year period observation dis-
charge or shorter.

. The Thomas-Fiering method was more accurate in long-term
prediction than the ARIMA method based on accuracy as-
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sessment in scheme V, scheme VI, and scheme VII. This was
thought to be because the Thomas-Fiering method was bet-
ter at predicting peak discharge that occurred outside the sea-
sonal period of 12, while the ARIMA method only focused
on the 12 seasonal period. Although the seasonal period was
indeed 12, there were times when the data trend changed to
form other peaks outside the usual pattern. This could be
seen from the comparison graph of observation discharge
and predicted discharge in scheme VI and VII, in Figure 13
and Figure 14.

4. CONCLUSION

The Based on the prediction of monthly average discharge that
has been carried out on the Siak River (Pekanbaru water gauge sta-
tion) using two data-driven models which are stochastic models,
which are the ARIMA and Thomas-Fiering methods, it is found
that both models work best for predicting 1-year discharge using 5
years of observed discharge. Both methods did not perform better
the longer the observation data was used, due to the increasingly
random pattern and trend of the data as the length of the calibrat-
ed observation data period increased. The Thomas-Fiering meth-
od is more accurate in predicting discharge above 1 year than the
ARIMA method based on accuracy assessment in schemes VI, and
VII, as well as comparison graphs, this is because the Thomas-Fi-
ering method is better at predicting peak discharge that occurs
outside the seasonal period, which is 12. Based on these points,
it is obtained that the Thomas-Fiering method tends to be more
accurate for the prediction of monthly average discharge on the
Siak River (Pos Duga Air Pekanbaru), which is expected to be the
basis for further research in the selection and further modification
of data driven discharge simulation models. The limitation of this
research is that it is applied to monthly average discharge that is
not too fluctuative, the suggestion for further research is to apply
data driven models for 15 daily discharge predictions, and can also
make performance comparisons between data-driven models and
conceptual models.
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