DOI: https://doi.org/10.31258/Jamt.7.1
Published: Jul 11, 2025
Articles
Self-Doped Porous Carbon Derived From Acacia Plantation Residues for Green-Supercapacitor in Sustainable Energy Applications
To improve bio-organic-carbon quality for supercapacitors, consider using dual or more heteroatom for more profitable carbon-chain doping. Developing suitable sources and preparation strategies is challenging but essential. Herein, we introduce a potential carbon source derived from acacia plantation residues, doped with boron, oxygen, and phosphorus. The pore structure of this carbon material can be precisely tuned to exhibit a well-defined hierarchical arrangement of micro-, meso-, and macropores through a low-ratio of phosphoric acid (H?PO?) impregnation method combined with dual-environment (N2 and CO2) vertical pyrolysis in one step integrated. The resulting material displays a confirmed hierarchical morphology with a hierarchical transformation into tunnel pores, in specific surface area of 521.70 m²/g which contributed to high charge storage and deliverability. Additionally, the material contains significant levels of boron (0.93%), oxygen (9.19%), and phosphorus (0.34%), facilitating a reversible Faradic reaction in the working electrode. Consequently, optimized-electrode achieves a specific capacitance of 198 F/g at 1 A/g in H?SO? electrolyte. In a two-electrode system, records energy density of 14 Wh/kg (1 A/g) at a maximum power density of 670 W/kg (10 A/g). These findings suggest that the natural incorporation of boron, oxygen, and phosphorus enhances both the activity and the hierarchical pore structure of carbon derived from acacia plantation residues.

Characterization and Impact of Graphene Oxide on the Curing and Mechanical Properties of Epoxy Resins
Graphene oxide (GO) has been widely studied as a nanofiller for epoxy resins due to its excellent mechanical, thermal, and interfacial properties. In this study, GO was synthesized via electrochemical exfoliation and characterized using FTIR, XRD, TGA, and SEM. GO was incorporated into an epoxy matrix (Litestone 3200 resin with 2131H hardener) at different weight percentages (0.10%, 0.13%, 0.20%, and 0.50%), and the curing behavior was analyzed through differential scanning calorimetry (DSC). The cure kinetics were evaluated using the Kissinger and Ozawa methods. The results indicated that the activation energy increased at 0.13% GO but decreased at higher concentrations. TGA analysis showed that the addition of GO improved thermal stability, particularly at 0.10% GO. FTIR confirmed the presence of oxygenated functional groups in GO, XRD indicated partial exfoliation and structural disorder, and SEM revealed sheet-like morphology. These results were consistent and complementary, supporting the successful incorporation of GO into the epoxy network. The addition of GO slightly improved the mechanical modulus without significantly altering the glass transition temperature (Tg).
